The Dunkl-Williams inequality with n elements in normed linear spaces

被引:0
|
作者
Pecaric, Josip
Rajic, Rajna
机构
[1] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Min Geol & Petr Engn, Zagreb 10000, Croatia
来源
关键词
triangle inequality; Dunkl-Williams inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish a generalization of the Dunkl-Williams inequality for finitely rnany elements in a normed linear space. As a consequence, we get some recently obtained results on the generalized triangle inequality and its reverse inequality. The case of equality for elements of a strictly convex normed linear space is also considered.
引用
收藏
页码:461 / 470
页数:10
相关论文
共 50 条
  • [21] DIFFERENTIAL INEQUALITY FOR DISTANCE FUNCTION IN NORMED LINEAR SPACES
    REDHEFFER, R
    WALTER, W
    MATHEMATISCHE ANNALEN, 1974, 211 (04) : 299 - 314
  • [22] On neutrosophic n−normed linear spaces
    Kumar V.
    Sharma A.
    Murtaza S.
    Neutrosophic Sets and Systems, 2023, 61 : 275 - 288
  • [23] Banach空间中的广义Dunkl-Williams常数及其性质
    张敬信
    应用泛函分析学报, 2016, 18 (02) : 189 - 196
  • [24] GENERALIZATION OF THE PECARIC-RAJIC INEQUALITY IN NORMED LINEAR SPACES
    Dragomir, Sever S.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (01): : 53 - 65
  • [25] An orthogonality in normed linear spaces based on angular distance inequality
    F. Dadipour
    F. Sadeghi
    A. Salemi
    Aequationes mathematicae, 2016, 90 : 281 - 297
  • [26] An orthogonality in normed linear spaces based on angular distance inequality
    Dadipour, F.
    Sadeghi, F.
    Salemi, A.
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 281 - 297
  • [27] ISOMETRY ON LINEAR n-NORMED SPACES
    Ma, Yumei
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 973 - 981
  • [28] 准HilbertC*-模中Dunkl-Williams不等式的推广
    高福根
    张倩
    数学学报(中文版), 2016, 59 (01) : 57 - 64
  • [29] POWER INEQUALITY ON NORMED SPACES
    CRABB, MJ
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1971, 17 (JUN) : 237 - &
  • [30] Soft n-Normed Linear Spaces: Generalizations and Extensions from Soft Normed Spaces
    Reddy, B. Surender
    Vijayabalaji, S.
    Punniyamoorthy, K.
    Rao, A. V. Raghavendra
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (01): : 265 - 277