Optimal design centring through a hybrid approach based on evolutionary algorithms and Monte Carlo simulation

被引:0
|
作者
Pierluissi, Luis [1 ]
Rocco, Claudio M. [1 ]
机构
[1] Cent Univ Venezuela, Fac Ingn, Apartado Postal 47937, Caracas, Venezuela
来源
ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1 | 2007年 / 4431卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many situations a robust design could be expensive and decision-makers need to evaluate a design that is not robust, that is, a design with a probability of satisfying the design specifications (or yield) less than 100 %. In this paper we propose a procedure for centring a design that maximises the yield, given predefined component tolerances. The hybrid approach is based on the use of Evolutionary Algorithms, Interval Arithmetic and procedures to estimate the yield percentage. The effectiveness of the method is tested on a literature case. We compare the special evolutionary strategy (1+1) with a genetic algorithm and deterministic, statistical and interval-based procedures for yield estimation.
引用
收藏
页码:31 / +
页数:2
相关论文
共 50 条
  • [31] Optimal probabilistic location of DGs using Monte Carlo simulation based different bio-inspired algorithms
    Hemeida, Mahmoud G.
    Alkhalaf, Salem
    Senjyu, Tomonobu
    Ibrahim, Abdalla
    Ahmed, Mahrous
    Bahaa-Eldin, Ayman M.
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (03) : 2735 - 2762
  • [32] Evolutionary network design technology: Hybrid genetic algorithms approach
    Gen, Mitsuo
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2004, 3 : 491 - 504
  • [33] A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms
    Guerra, J. G.
    Rubiano, J. G.
    Winter, G.
    Guerra, A. G.
    Alonso, H.
    Arnedo, M. A.
    Tejera, A.
    Gil, J. M.
    Rodriguez, R.
    Martel, P.
    Bolivar, J. P.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2015, 149 : 8 - 18
  • [34] Optimal tuning of the hybrid Monte Carlo algorithm
    Beskos, Alexandros
    Pillai, Natesh
    Roberts, Gareth
    Sanz-Serna, Jesus-Maria
    Stuart, Andrew
    BERNOULLI, 2013, 19 (5A) : 1501 - 1534
  • [35] A direct approach to conformational dynamics based on hybrid Monte Carlo
    Schütte, C
    Fischer, A
    Huisinga, W
    Deuflhard, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) : 146 - 168
  • [36] Monte Carlo algorithms for optimal stopping and statistical learning
    Egloff, D
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (02): : 1396 - 1432
  • [37] A Monte Carlo simulation for tooling design
    Mills, GA
    WIRE & CABLE TECHNICAL SYMPOSIUM (WCTS), CONFERENCE PROCEEDINGS, 1998, : 466 - 471
  • [38] Monte Carlo simulation for filter design
    Beikae, M
    FILTRATION AND DRAINAGE IN GEOTECHNICAL/GEOENVIRONMENTAL ENGINEERING, 1998, (78): : 107 - 122
  • [39] Monte Carlo simulation for tooling design
    Mills, Gregory A.
    Proceedings of the Annual Convention of the Wire Association International, 1999, : 466 - 471
  • [40] ON OPTIMAL VECTOR ALGORITHMS OF THE MONTE-CARLO METHOD
    STARKOV, AV
    DOKLADY AKADEMII NAUK SSSR, 1989, 306 (04): : 791 - 794