Projection-based gradient descent training of radial basis function networks

被引:0
|
作者
Muezzinoglu, MK [1 ]
Zurada, JM [1 ]
机构
[1] Univ Louisville, Computat Intelligence Lab, Louisville, KY 40292 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new Radial Basis Function (RBF) network training procedure that employs a linear projection technique along parameter search is proposed. To be applied simultaneously with the conventional center and/or weight adjustment methods, a gradient descent iteration on the width parameters of RBF units is introduced. The projection mechanism used by the procedure avoids negative width parameters and enables detection of redundant units, which can then be pruned from the network. Proposed training approach is applied to design a feedback neuro-controller for a nonlinear plant to track a desired trajectory.
引用
收藏
页码:1297 / 1302
页数:6
相关论文
共 50 条
  • [41] A review of genetic algorithms applied to training radial basis function networks
    Harpham, C
    Dawson, CW
    Brown, MR
    NEURAL COMPUTING & APPLICATIONS, 2004, 13 (03): : 193 - 201
  • [42] A training method for improving the generalization performance of radial basis function networks
    Luan, SJ
    He, C
    Xu, LX
    Ma, DS
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 859 - 863
  • [43] A review of genetic algorithms applied to training radial basis function networks
    C. Harpham
    C. W. Dawson
    M. R. Brown
    Neural Computing & Applications, 2004, 13 : 193 - 201
  • [44] A supervised fuzzy clustering for Radial Basis Function Neural Networks training
    Tagliaferri, R
    Staiano, A
    Scala, D
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1804 - 1809
  • [45] New Strategies for Initialization and Training of Radial Basis Function Neural Networks
    Franco, D. G. B.
    Steiner, M. T. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (06) : 1182 - 1188
  • [46] A Fast and Efficient Method for Training Categorical Radial Basis Function Networks
    Alexandridis, Alex
    Chondrodima, Eva
    Giannopoulos, Nikolaos
    Sarimveis, Haralambos
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (11) : 2831 - 2836
  • [47] A strategy for an efficient training of radial basis function networks for classification applications
    Buchtala, O
    Neumann, P
    Sick, B
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1025 - 1030
  • [48] Hybrid training of radial basis function networks in a partitioning context of classification
    Oukhellou, L
    Aknin, P
    NEUROCOMPUTING, 1999, 28 : 165 - 175
  • [49] Radial basis function neural network training using variable projection and fuzzy means
    Despina Karamichailidou
    Georgios Gerolymatos
    Panagiotis Patrinos
    Haralambos Sarimveis
    Alex Alexandridis
    Neural Computing and Applications, 2024, 36 (33) : 21137 - 21151
  • [50] ROBUST TRAINING OF RADIAL BASIS NETWORKS
    Rudenko, O. G.
    Bezsonov, O. O.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2011, 47 (06) : 863 - 870