Enhancing Luminescence in Lanthanide-Doped Upconversion Nanoparticles

被引:546
|
作者
Han, Sanyang [1 ]
Deng, Renren [1 ]
Xie, Xiaoji [1 ]
Liu, Xiaogang [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[2] Inst Mat Res & Engn, Singapore 117602, Singapore
基金
新加坡国家研究基金会;
关键词
doping; lanthanides; nanoparticles; plasmon; upconversion; NEAR-INFRARED LIGHT; ENERGY-TRANSFER; UPCONVERTING NANOPARTICLES; CROSS-SECTION; WHITE-LIGHT; IN-VITRO; NANOCRYSTALS; ENHANCEMENT; EMISSION; FLUORESCENCE;
D O I
10.1002/anie.201403408
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The enthusiasm for research on lanthanide-doped upconversion nanoparticles is driven by both a fundamental interest in the optical properties of lanthanides embedded in different host lattices and their promise for broad applications ranging from biological imaging to photodynamic therapy. Despite the considerable progress made in the past decade, the field of upconversion nanoparticles has been hindered by significant experimental challenges associated with low upconversion conversion efficiencies. Recent experimental and theoretical studies on upconversion nanoparticles have, however, led to the development of several effective approaches to enhancing upconversion luminescence, which could have profound implications for a range of applications. Herein we present the underlying principles of controlling energy transfer through lanthanide doping, overview the major advances and key challenging issues in improving upconversion luminescence, and consider the likely directions of future research in the field.
引用
收藏
页码:11702 / 11715
页数:14
相关论文
共 50 条
  • [21] The Fluoride Host: Nucleation, Growth, and Upconversion of Lanthanide-Doped Nanoparticles
    Naccache, Rafik
    Yu, Qing
    Capobianco, John A.
    ADVANCED OPTICAL MATERIALS, 2015, 3 (04): : 482 - 509
  • [22] Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review
    Liu, Yu-Qi
    Qin, Li-Ying
    Li, Hong-Jiao
    Wang, Yi-Xi
    Zhang, Rui
    Shi, Jia-Min
    Wu, Jin-Hua
    Dong, Gen-Xi
    Zhou, Ping
    NANOMEDICINE, 2021, 16 (24) : 2207 - 2242
  • [23] Lanthanide-doped nanoparticles in photovoltaics - more than just upconversion
    Zhang, Pinzheng
    Liang, Liangliang
    Liu, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (45) : 16110 - 16131
  • [24] Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures
    Fan, Yong
    Liu, Lu
    Zhang, Fan
    NANO TODAY, 2019, 25 : 68 - 84
  • [25] Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application
    Li, Yong
    Chen, Chen
    Liu, Fangfang
    Liu, Jinliang
    MICROCHIMICA ACTA, 2022, 189 (03)
  • [26] Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications
    Wang, Jing
    Sheng, Ting
    Zhu, Xiaohui
    Li, Qin
    Wu, Yihan
    Zhang, Jing
    Liu, Jinliang
    Zhang, Yong
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (04) : 1743 - 1770
  • [27] Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects
    Sun, Lining
    Wei, Ruoyan
    Feng, Jing
    Zhang, Hongjie
    COORDINATION CHEMISTRY REVIEWS, 2018, 364 : 10 - 32
  • [28] Lanthanide-Doped Upconversion Nanoparticles for Super-Resolution Microscopy
    Dong, Hao
    Sun, Ling-Dong
    Yan, Chun-Hua
    FRONTIERS IN CHEMISTRY, 2021, 8
  • [29] Local-Structure-Dependent Upconversion Luminescence in Lanthanide-Doped Nanocrystals
    Fu H.
    Liu Y.
    Hong M.
    Zhongguo Xitu Xuebao/Journal of the Chinese Rare Earth Society, 2021, 39 (01): : 24 - 34
  • [30] Recent advances of lanthanide-doped upconversion nanoparticles for biological applications
    Li, Hui
    Wang, Xin
    Huang, Dingxin
    Chen, Guanying
    NANOTECHNOLOGY, 2020, 31 (07)