Research on Objective Tracking of Mean Shift Algorithm Based on Particle Swarm Optimization

被引:0
|
作者
Chu, Hongxia [1 ]
Wang, Kejun [1 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China
关键词
Particle Swarm Optimization; Mean Shift; model updating; objective tracking;
D O I
10.1109/IITA.2009.270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In light of Mean Shift's inability to update model during objective tracking process, an updating solution for models of Means Shift algorithm is proposed by utilization of Particle Swarm Optimization. This solution improves each Eigen value probability, as a single particle, in model image characteristic space by using Particle Swarm Optimization algorithm, time variations according to probability can be calculated to acquire variation of all Eigen value in models, which in turn, results in updating of models. In the solution, the combinational advantage of Particle Swarm's global and regional search is fully utilized to acquire self-adaptable and optimal models. Experiment results indicate the solution can effectively solve models' un-matching problems resulted from spinning and masking of moving objective so as to realize accurate and fast objective tracking and improve self-adapting ability of tracking algorithm.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
  • [21] Research on target tracking algorithm based on mean shift with adaptive bandwidth
    Han, Ming
    Wang, Jingqin
    Wang, Jingtao
    Meng, Junying
    Cheng, Ying
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2022, 22 (02) : 661 - 675
  • [22] Target tracking algorithm based on particle filter and mean shift under occlusions
    Li Zhanli
    Cui Leilei
    Xie Ailing
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2015, : 443 - 446
  • [23] Research on Multi-Objective Optimization of Smart Grid Based on Particle Swarm Optimization
    Long, Fei
    Jin, Bo
    Yu, Zheng
    Xu, Huan
    Wang, Jingjing
    Bhola, Jyoti
    Shavkatovich, Shavkatov Navruzbek
    ELECTRICA, 2023, 23 (02): : 222 - 230
  • [24] Research on Multi-Objective Multidisciplinary Design Optimization Based on Particle Swarm Optimization
    Wang, Yangyang
    Han, Minghong
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON RELIABILITY SYSTEMS ENGINEERING (ICRSE 2017), 2017,
  • [25] Multi-Objective Particle Swarm Optimization Algorithm Based on Game Strategies
    Li, Zhiyong
    Liu, Songbing
    Xiao, Degui
    Chen, Jun
    Li, Kenli
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 287 - 293
  • [26] A new multi-objective particle swarm optimization algorithm based on decomposition
    Dai, Cai
    Wang, Yuping
    Ye, Miao
    INFORMATION SCIENCES, 2015, 325 : 541 - 557
  • [27] An improved multi-objective cultural algorithm based on particle swarm optimization
    Wu, Ya-Li
    Xu, Li-Qing
    Kongzhi yu Juece/Control and Decision, 2012, 27 (08): : 1127 - 1132
  • [28] Multi-Objective Particle Swarm Optimization Algorithm Based on Differential Populations
    Qiao, Ying
    INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2012, 2012, 7390 : 510 - 517
  • [29] Multi-Objective Particle Swarm Optimization Algorithm Based on Population Decomposition
    Zhao, Yuan
    Liu, Hai-Lin
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2013, 2013, 8206 : 463 - 470
  • [30] Multi-objective Particle Swarm Optimization Algorithm Based on the Disturbance Operation
    Gao, Yuelin
    Qu, Min
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 591 - 600