Sparse Depth Odometry: 3D Keypoint based Pose Estimation from Dense Depth Data

被引:0
|
作者
Manoj, Prakhya Sai [1 ]
Liu Bingbing [2 ]
Lin Weisi [1 ]
Qayyum, Usman [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[2] ASTAR, Inst Infocomm Res, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents Sparse Depth Odometry (SDO) to incrementally estimate the 3D pose of a depth camera in indoor environments. SDO relies on 3D keypoints extracted on dense depth data and hence can be used to augment the RGB-D camera based visual odometry methods that fail in places where there is no proper illumination. In SDO, our main contribution is the design of the keypoint detection module, which plays a vital role as it condenses the input point cloud to a few keypoints. SDO differs from existing depth alone methods as it does not use the popular signed distance function and can run online, even without a GPU. A new keypoint detection module is proposed via keypoint selection, and is based on extensive theoretical and experimental evaluation. The proposed keypoint detection module comprises of two existing keypoint detectors, namely SURE [1] and NARF [2]. It offers reliable keypoints that describe the scene more comprehensively, compared to others. Finally, an extensive performance evaluation of SDO on benchmark datasets with the proposed keypoint detection module is presented and compared with the state-of-the-art.
引用
收藏
页码:4216 / 4223
页数:8
相关论文
共 50 条
  • [21] Realistic Depth Image Synthesis for 3D Hand Pose Estimation
    Zhou, Jun
    Xu, Chi
    Ge, Yuting
    Cheng, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5246 - 5256
  • [22] Monocular 3D Human Pose Estimation by Predicting Depth on Joints
    Nie, Bruce Xiaohan
    Wei, Ping
    Zhu, Song-Chun
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3467 - 3475
  • [23] Real-time 3D Pose Estimation from Single Depth Images
    Schnuerer, Thomas
    Fuchs, Stefan
    Eisenbach, Markus
    Gross, Horst-Michael
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 716 - 724
  • [24] DRPose3D: Depth Ranking in 3D Human Pose Estimation
    Wang, Min
    Chen, Xipeng
    Liu, Wentao
    Qian, Chen
    Lin, Liang
    Ma, Lizhuang
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 978 - 984
  • [25] Depth-based 3D Hand Pose Tracking
    Quach, Kha Gia
    Chi Nhan Duong
    Luu, Khoa
    Bui, Tien D.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2746 - 2751
  • [26] Keypoint Fusion for RGB-D Based 3D Hand Pose Estimation
    Liu, Xingyu
    Ren, Pengfei
    Gao, Yuanyuan
    Wang, Jingyu
    Sun, Haifeng
    Qi, Qi
    Zhuang, Zirui
    Liao, Jianxin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3756 - 3764
  • [27] MDF-SLAM: Monocular Dense 3D Reconstruction Based on Depth Estimation
    Zhu, Zuojun
    Xu, Xiangrong
    Li, Yonggang
    You, Tianya
    Wang, Xiaoyi
    Wang, Zhixiong
    Wang, Haiyan
    Xu, Shanshan
    Rodic, Aleksandar
    Petrovic, Petar B.
    2022 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2022), 2022, : 787 - 792
  • [28] eGAC3D: enhancing depth adaptive convolution and depth estimation for monocular 3D object pose detection
    Ngo, Duc Tuan
    Bui, Minh-Quan Viet
    Nguyen, Duc Dung
    Pham, Hoang-Anh
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [29] HMTNet: 3D Hand Pose Estimation From Single Depth Image Based on Hand Morphological Topology
    Zhou, Weiguo
    Jiang, Xin
    Chen, Chen
    Mei, Sijia
    Liu, Yun-Hui
    IEEE SENSORS JOURNAL, 2020, 20 (11) : 6004 - 6011
  • [30] Survey on depth and RGB image-based 3D hand shape and pose estimation
    Lin HUANG
    Boshen ZHANG
    Zhilin GUO
    Yang XIAO
    Zhiguo CAO
    Junsong YUAN
    虚拟现实与智能硬件(中英文), 2021, 3 (03) : 207 - 234