On Some Geometric Aspects of Coherent States

被引:1
|
作者
Spera, Mauro [1 ]
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis Niccolo Tartaglia, Via Musei 41, I-25121 Brescia, Italy
关键词
MINIMUM FISHER INFORMATION; QUANTUM-MECHANICS; RIEMANN SURFACES; VECTOR BUNDLES; REPRESENTATIONS; PHASE; QUANTIZATION; DERIVATION; MANIFOLDS; PRINCIPLE;
D O I
10.1007/978-3-319-76732-1_8
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this note we review some issues in the geometrical approach to coherent states (CS). Specifically, we reformulate the standard (compact, simple) Lie group CS by placing them within the frameworks of geometric quantum mechanics and holomorphic geometric quantization and establishing a connection with Fisher information theory. Secondly, we briefly revisit the CS-approach to the Hilbert space Grassmannian and the KP-hierarchy and finally we discuss the CS aspects emerging in the geometric approach to Landau levels via the Fourier-Mukai-Nahm transform.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条