A Diophantine equation with the harmonic mean

被引:1
|
作者
Zhang, Yong [1 ,2 ]
Chen, Deyi [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine equation; Pell's equation; Integer solutions; Rational parametric solutions; F(X)F(Y);
D O I
10.1007/s10998-019-00302-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f is an element of Q[x] be a polynomial without multiple roots and degf >= 2. We give conditions for f=x2+bx+cunder which the Diophantine equation 2f(x)f(y)=f(z)(f(x)+f(y))\ has infinitely many nontrivial integer solutions and prove that this equation has infinitely many rational parametric solutions for f=x2+bx with nonzero integer b. Moreover, we show that it has a rational parametric solution for infinitely many cubic polynomials.
引用
收藏
页码:138 / 144
页数:7
相关论文
共 50 条
  • [21] ON THE DIOPHANTINE EQUATION
    Zhang, Zhongfeng
    Bai, Meng
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (01) : 73 - 77
  • [22] On a Diophantine Equation
    Tho, Nguyen Xuan
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (01) : 183 - 194
  • [23] A DIOPHANTINE EQUATION
    OURSLER, CC
    DJOKOVIC, DZ
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (08): : 899 - &
  • [24] A diophantine equation appearing in diophantine approximation
    Jin, Y
    Schmidt, AL
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2001, 12 (04): : 477 - 482
  • [25] A mean value theorem for the Diophantine equation axy-x-y=n
    Huang, J.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (1-2) : 68 - 78
  • [26] New multivariable mean from nonlinear matrix equation associated to the harmonic mean
    Mer, Vatsalkumar N.
    Kim, Sejong
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (3-4): : 605 - 622
  • [27] A cubic diophantine equation and a related diophantine chain
    Choudhary, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (09): : 1421 - 1428
  • [28] On the Diophantine Equation px
    Mina, Renz Jimwel S.
    Bacani, Jerico B.
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (01): : 67 - 75
  • [29] An exponential diophantine equation
    Henderson, D
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (03): : 243 - 243
  • [30] ANOTHER DIOPHANTINE EQUATION
    MARSH, DCB
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (08): : 895 - &