Finite dimensional models for extremes of Gaussian and non-Gaussian processes

被引:6
|
作者
Xu, Hui [1 ]
Grigoriu, Mircea D. [1 ,2 ]
机构
[1] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Civil & Environm Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Extremes; Weak convergence; Almost sure convergence; Finite dimensional model; Karhunen-Loeve (KL) representation; WIND PRESSURE; SIMULATION;
D O I
10.1016/j.probengmech.2022.103199
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Numerical solutions of stochastic problems involving random processes X(t), which constitutes infinite families of random variables, require to represent these processes by finite dimensional (FD) models X-d(t), i.e., deterministic functions of time depending on finite numbers d of random variables. Most available FD models match the mean, correlation, and other global properties of X(t). They provide useful information to a broad range of problems, but cannot be used to estimate extremes or other sample properties of X(t). We develop FD models X-d(t) for processes X(t) with continuous samples and establish conditions under which these models converge weakly to X(t) in the space of continuous functions as d -> infinity. These theoretical results are illustrated by numerical examples which show that, under the conditions established in this study, samples and extremes of X(t) can be approximated by samples and extremes of X-d(t) and that the discrepancy between samples and extremes of these processes decreases with d.
引用
收藏
页数:13
相关论文
共 50 条
  • [22] Stochastic Energetics for Non-Gaussian Processes
    Kanazawa, Kiyoshi
    Sagawa, Takahiro
    Hayakawa, Hisao
    PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [23] Equivalence of Non-Gaussian Linear Processes
    程乾生
    数学进展, 1993, (03) : 285 - 285
  • [24] Adaptive filtering for non-Gaussian processes
    Kidmose, P
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 424 - 427
  • [25] ON GAUSSIAN SUM OF GAUSSIAN VARIATES NON-GAUSSIAN SUM OF GAUSSIAN VARIATES AND GAUSSIAN SUM OF NON-GAUSSIAN VARIATES
    MASONSON, M
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (09): : 1661 - &
  • [26] INFORMATION RATES OF NON-GAUSSIAN PROCESSES
    GERRISH, AM
    SCHULTHEISS, PM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1964, 10 (04) : 265 - &
  • [27] NON-GAUSSIAN, NON-MARKOV PROCESSES
    EVANS, MW
    GRIGOLINI, P
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1980, 76 : 761 - 766
  • [28] Gaussian sum filtering methods for nonlinear non-Gaussian models
    Lin Q.
    Yin J.-J.
    Zhang J.-Q.
    Hu B.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2010, 32 (12): : 2493 - 2499
  • [29] Gaussian and non-Gaussian statistics
    Pawelec, JJ
    1997 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, PROCEEDINGS, 1997, : 475 - 479
  • [30] Description of Nonstationary Non-Gaussian Processes Using Finite Atomic Functions
    Kravchenko, V. F.
    Yiyang, Luo
    Lutsenko, V. I.
    Lutsenko, I. V.
    Popov, I. V.
    2016 9TH INTERNATIONAL KHARKIV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES (MSMW), 2016,