Partial informational correlation-based band selection for hyperspectral image classification

被引:4
|
作者
Paul, Subir [1 ]
Kumar, Dasika Nagesh [1 ,2 ,3 ]
机构
[1] Indian Inst Sci, Dept Civil Engn, Bengaluru, India
[2] Indian Inst Sci, Ctr Earth Sci, Bengaluru, India
[3] Indian Inst Sci, Interdisciplinary Ctr Water Res, Bengaluru, India
来源
JOURNAL OF APPLIED REMOTE SENSING | 2019年 / 13卷 / 04期
关键词
band selection; hyperspectral image classification; information theory; normalized mutual information; partial informational correlation; support vector machine; MUTUAL-INFORMATION; SPATIAL CLASSIFICATION; RANDOM FOREST; MACHINE; ENTROPY;
D O I
10.1117/1.JRS.13.046505
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral (HS) data are enriched with highly resourceful abundant spectral bands. However, analyzing and interpreting these ample amounts of data is a challenging task. Optimal spectral bands should be chosen to address the issue of redundancy and to capitalize on the absolute advantages of HS data. Partial informational correlation (PIC)-based band selection approach is proposed for feature selection-based classification of HS images. PIC measure appears to be more skillful compared to mutual information for estimation of nonparametric conditional dependency. In this proposed approach, HS narrow bands are selected in an innovative way utilizing the PIC. This approach is more efficient in terms of computational time and in generalizing the applicability of selected spectral bands. Further, these optimal spectral bands are used in the support vector machine (SVM) and random forest classifier for performance evaluation. The optimum performance is accomplished with SVM classifier, and the achieved average overall accuracies are 82.89%, 91.4%, and 91.29% for the Indian Pines, Pavia University, and Botswana datasets, respectively. The proposed band selection approach is compared with different state-of-the-art techniques. This methodology improves the classification performances compared to the existing techniques, and the advancement in performances is proven to be statistically significant. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Band selection algorithm based on information entropy for hyperspectral image classification
    Xie, Li
    Li, Guangyao
    Peng, Lei
    Chen, Qiaochuan
    Tan, Yunlan
    Xiao, Mang
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [12] Unsupervised Cluster-based Band Selection for Hyperspectral Image Classification
    Wu, Jee-Cheng
    Tsuei, Gwo-Chyang
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 : 562 - 565
  • [13] Class Information-Based Band Selection for Hyperspectral Image Classification
    Song, Meiping
    Shang, Xiaodi
    Wang, Yulei
    Yu, Chunyan
    Chang, Chein-I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 8394 - 8416
  • [14] Representativeness and Redundancy-Based Band Selection for Hyperspectral Image Classification`
    Liu, Yufei
    Li, Xiaorun
    Feng, Yueming
    Zhao, Liaoying
    Zhang, Wenqiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (09) : 3534 - 3562
  • [15] Group Lasso-Based Band Selection for Hyperspectral Image Classification
    Yang, Daiqin
    Bao, Wentao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (12) : 2438 - 2442
  • [16] Progressive Band Selection Processing of Hyperspectral Image Classification
    Song, Meiping
    Yu, Chunyan
    Xie, Hongye
    Chang, Chein-, I
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1762 - 1766
  • [17] A novel approach to band selection for hyperspectral image classification
    Lin, Lin
    Li, Shijin
    Zhu, Yuelong
    Xu, Lizhong
    PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 298 - +
  • [18] Boltzmann Entropy-Based Unsupervised Band Selection for Hyperspectral Image Classification
    Gao, Peichao
    Wang, Jicheng
    Zhang, Hong
    Li, Zhilin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (03) : 462 - 466
  • [19] Hyperspectral image classification by second generation wavelet based on adaptive band selection
    Liu, Chunhong
    Zhao, Chunhui
    Chen, Wanhai
    2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, 2005, : 1175 - 1179
  • [20] Simulated Annealing-Based Optimization for Band Selection in Hyperspectral Image Classification
    Khelifa, Said
    Boukhatem, Fatima
    Kaddar, Leila Benaissa
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 873 - 879