STUDY OF FRACTIONAL POINCARE INEQUALITIES ON UNBOUNDED DOMAINS

被引:12
|
作者
Chowdhury, Indranil [1 ]
Csato, Gyula [2 ]
Roy, Prosenjit [3 ]
Firoj, S. K. [3 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
[2] Univ Barcelona, Barcelona, Spain
[3] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Fractional Poincare inequality; fractional-Sobolev spaces; unbounded domains; infinite strips like domains; (regional) fractional Laplacian; BREZIS-NIRENBERG RESULT; ASYMPTOTIC-BEHAVIOR; EQUATIONS; SET; SPACES;
D O I
10.3934/dcds.2020394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study (regional) fractional Poincare type inequalities on unbounded domains satisfying the finite ball condition. Both existence and non existence type results on regional fractional inequality are established depending on various conditions on domains and on the range of s is an element of (0, 1). The best constant in both regional fractional and fractional Poincare inequality is characterized for strip like domains (omega -> Rn-1), and the results obtained in this direction are analogous to those of the local case. This settles one of the natural questions raised by K. Yeressian in [Asymptotic behavior of elliptic nonlocal equations set in cylinders, Asymptot. Anal. 89, (2014), no 1-2].
引用
收藏
页码:2993 / 3020
页数:28
相关论文
共 50 条
  • [21] Ridged domains, embedding theorems and Poincare inequalities
    Evans, WD
    Harris, DJ
    Pick, L
    MATHEMATISCHE NACHRICHTEN, 2001, 221 : 41 - 74
  • [22] Poincare inequalities in quasihyperbolic boundary condition domains
    Hurri-Syrjanen, Ritva
    Marola, Niko
    Vahakangas, Antti V.
    MANUSCRIPTA MATHEMATICA, 2015, 148 (1-2) : 99 - 118
  • [23] Best Constants in Poincare Inequalities for Convex Domains
    Esposito, L.
    Nitsch, C.
    Trombetti, C.
    JOURNAL OF CONVEX ANALYSIS, 2013, 20 (01) : 253 - 264
  • [24] Weighted Poincare Inequalities on Symmetric Convex Domains
    Chua, Seng-Kee
    Duan, Huo-Yuan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (05) : 2103 - 2114
  • [25] Weighted Poincare and Korn inequalities for Holder α domains
    Acosta, G
    Durán, RG
    Lombardi, AL
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (04) : 387 - 400
  • [26] IMPROVED POINCARE INEQUALITIES IN FRACTIONAL SOBOLEV SPACES
    Drelichman, Irene
    Duran, Ricardo G.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 885 - 903
  • [27] ON THE WEIGHTED FRACTIONAL POINCARE-TYPE INEQUALITIES
    Hurri-Syrjanen, Ritva
    Lopez-Garcia, Fernando
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 213 - 230
  • [28] VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS
    Kristaly, Alexandru
    Varga, Csaba
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (02): : 3 - 87
  • [29] A remark on optimal weighted Poincare inequalities for convex domains
    Ferone, V.
    Nitsch, C.
    Trombetti, C.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2012, 23 (04) : 467 - 475
  • [30] Divergence operator and Poincare inequalities on arbitrary bounded domains
    Duran, Ricardo
    Muschietti, Maria-Amelia
    Russ, Emmanuel
    Tchamitchian, Philippe
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 795 - 816