Tumor necrosis factor-alpha (TNF-alpha) is a cytokine that induces apoptosis in various cell systems by binding to the TNF receptor (TNFR). To study TNF-alpha-induced apoptosis, we isolated and characterized a novel TNF-alpha-resistant variant, U937/TNF clone UA, from human monocytic leukemia U937 cells. The UA cells resist apoptosis induced by TNF-alpha and anti-fas antibody but not by anticancer drugs, such as VP-16 and Ara-C. Somatic cell hybridization between U937 and UA showed that apoptosis resistance to TNF-alpha in UA was genetically recessive. The hybridization analysis also showed that UA and another recessive mutant clone, UC, belong to different complementation groups in TNF-alpha-induced apoptosis signaling. In UA cells, TNF-alpha-induced disruption of mitochondrial membrane potential and CPP32 activation were abrogated. Expression of TNFR, Fas, and Bcl-2 family proteins was not changed in UA cells. These results suggest that the apoptosis resistant UA cells could have a functional defect in apoptosis signaling from the TN FR to mitochondria and interleukin-1 beta converting enzyme (ICE) family protease activation. UA cells could be used to study signaling linkage between cell death-inducing receptor and mitochondria. (C) 1998 Wiley-Liss, Inc.