Generalized nonlinear superposition principles for polynomial planar vector fields

被引:0
|
作者
García, IA
Giacornini, H
Giné, J
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083,Fac Sci & Tech, F-37200 Tours, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study some aspects of the integrability problem for polynomial vector fields x = P(x, y), = Q(x, y). We analyze the possible existence of first integrals of the form I(x, y) = (y - g(1) (x))(alpha1) (y - g(2)(x))(alpha2...) (y -g(e)(x))(alphae) h(x), where g(1)(x),..., g(e)(x) are unknown particular solutions of dy/dx = Q(x, y)/P(x, y), alpha(i) are unknown constants and h(x) is an unknown function. We show that for certain systems some of the particular solutions remain arbitrary and the other ones are explicitly determined or are functionally related to the arbitrary particular solutions. We obtain in this way a nonlinear superposition principle that generalize the classical nonlinear superposition principle of the Lie theory. In general, the first integral contains some arbitrary solutions of the system but also quadratures of these solutions and an explicit dependence on the independent variable. In the case when all the particular solutions are determined, they are algebraic functions and our algorithm gives an alternative method for determining such type of solutions.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [1] Generalized nonlinear superposition principles for planar polynomial vector fields
    Gine, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E679 - E684
  • [2] Generalized nonlinear superposition principles
    García, IA
    Giné, J
    Giacomini, H
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 334 - 336
  • [3] Generalized cofactors and nonlinear superposition principles
    García, IA
    Giné, J
    APPLIED MATHEMATICS LETTERS, 2003, 16 (07) : 1137 - 1141
  • [4] ON POLYNOMIAL HAMILTONIAN PLANAR VECTOR-FIELDS
    CIMA, A
    GASULL, A
    MANOSAS, F
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (02) : 367 - 383
  • [5] ON THE MULTIPLICITY OF THE CIRCUMFERENCE IN PLANAR POLYNOMIAL VECTOR FIELDS
    Gine, Jaume
    Grau, Maite
    De Prada, Paz
    FIXED POINT THEORY, 2008, 9 (01): : 105 - 137
  • [6] A class of polynomial planar vector fields with polynomial first integral
    Ferragut, A.
    Galindo, C.
    Monserrat, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 354 - 380
  • [7] Generalized normal forms for polynomial vector fields
    Palacián, J
    Yanguas, P
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (04): : 445 - 469
  • [8] Configurations of limit cycles and planar polynomial vector fields
    Llibre, J
    Rodríguez, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) : 374 - 380
  • [9] Simple Darboux points of polynomial planar vector fields
    Ollagnier, JM
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) : 247 - 262
  • [10] Periodic perturbations of quadratic planar polynomial vector fields
    Messias, M
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2002, 74 (02): : 193 - 198