ON THE MULTIPLICITY OF THE CIRCUMFERENCE IN PLANAR POLYNOMIAL VECTOR FIELDS

被引:0
|
作者
Gine, Jaume [1 ]
Grau, Maite [1 ]
De Prada, Paz [1 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
来源
FIXED POINT THEORY | 2008年 / 9卷 / 01期
关键词
Multiplicity; cyclicity; limit cycle; planax vector field; circumference;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider planar polynomial differential systems of the form: (x) over dot = P(x, y), (y) over dot = Q(x, y), where P(x, y) and Q(x, y) are polynomials with real coefficients whose maximum degree is d. We only consider systems of this form with the circumference x(2) + y(2) - 1 = 0 as a periodic orbit. These systems take the form: (x) over dot = -yc(x,y) + f(x,y)a(x,y), (y) over dot = xc(x,y) + f(x,y)b(x,y), where f(x,y) = (x(2) + y(2) -1)/2 and a, b and c are real polynomials. Our interest in this work is to study the multiplicity of the circumference as periodic orbit of the aforementioned system. This work contains some theorems that characterize when the circumference is a limit cycle of multiplicity m and when it belongs to a period annulus. Moreover, if we assume that the system is of a particular form, we will give an upper bound for the possible multiplicities that the circumference may have as a limit cycle. Finally, we apply our results to some examples.
引用
收藏
页码:105 / 137
页数:33
相关论文
共 50 条
  • [1] The multiplicity of the equatorial limit cycle of a class of planar polynomial vector fields
    Feng, Guangting
    Liu, Jing
    Zhang, Xin-an
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1477 - 1480
  • [2] Multiplicity of invariant algebraic curves in polynomial vector fields
    Christopher, Colin
    Llibre, Jaume
    Pereira, Jorge Vitorio
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) : 63 - 117
  • [3] ON POLYNOMIAL HAMILTONIAN PLANAR VECTOR-FIELDS
    CIMA, A
    GASULL, A
    MANOSAS, F
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (02) : 367 - 383
  • [4] A class of polynomial planar vector fields with polynomial first integral
    Ferragut, A.
    Galindo, C.
    Monserrat, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 354 - 380
  • [5] Configurations of limit cycles and planar polynomial vector fields
    Llibre, J
    Rodríguez, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) : 374 - 380
  • [6] Simple Darboux points of polynomial planar vector fields
    Ollagnier, JM
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) : 247 - 262
  • [7] Periodic perturbations of quadratic planar polynomial vector fields
    Messias, M
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2002, 74 (02): : 193 - 198
  • [8] On planar polynomial vector fields with elementary first integrals
    Christopher, Colin
    Llibre, Jaume
    Pantazi, Chara
    Walcher, Sebastian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (08) : 4572 - 4588
  • [9] Realization problems for limit cycles of planar polynomial vector fields
    Margalef-Bentabol, Juan
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3844 - 3859
  • [10] Commuting planar polynomial vector fields for conservative Newton systems
    Nagloo, Joel
    Ovchinnikov, Alexey
    Thompson, Peter
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2018, 52 (03): : 59 - 62