Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system

被引:72
|
作者
Wang, Zhiwen [1 ,2 ]
Ting, David S. -K. [2 ]
Carriveau, Rupp [2 ]
Xiong, Wei [1 ]
Wang, Zuwen [1 ]
机构
[1] Dalian Maritime Univ, Inst Ship Electromech Equipment, Dalian 116026, Peoples R China
[2] Univ Windsor, Turbulence & Energy Lab, Ed Lumley Ctr Engn Innovat, Windsor, ON N9B 3P4, Canada
关键词
Underwater compressed air energy storage (UWCAES); Thermal energy storage (TES); Battery energy storage (BES); Renewable energy; Multi-level; Offshore energy storage; CAES SYSTEM; POWER;
D O I
10.1016/j.est.2016.01.002
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy storage technologies are essential for the mainstream realization of renewable energy. Underwater compressed air energy storage (UWCAES) is developed from mature compressed air energy storage (CAES) technologies and retrofitted to store offshore renewable energy. Existing UWCAES technologies, however, usually operate at off-design conditions when handling fluctuating and intermittent renewable energy, which compromises the round-trip exergy efficiency. To increase efficiency, a multi-level UWCAES system is proposed. The results show that the exergy efficiency of the multi-level UWCAES system varies from 62% to 81% in different working modes. The exergy efficiency tends toward 62% when more energy is stored in the CAES subsystem and approaches 81% when more energy is stored in the design-integrated battery pack. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 211
页数:9
相关论文
共 50 条
  • [41] Thermodynamic and economic analysis of a novel gravity-enhanced compressed air energy storage system
    Zhang, Xuelin
    Xue, Xiaodai
    Zhang, Tong
    Xie, Ningning
    Wang, Yazhou
    Ma, Linrui
    Wang, Guohua
    Mei, Shengwei
    Wen, Jun
    Gong, Linghui
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (10) : 4044 - 4060
  • [42] Thermodynamic modeling and comparative analysis of a compressed air energy storage system boosted with thermoelectric unit
    Musharavati, Farayi
    Khanmohammadi, Shoaib
    Rahmani, Mohammad
    Khanmohammadi, Saber
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [43] Thermodynamic Analysis on a Novel Compressed-Air Based Pumped Hydro Energy Storage System
    Yao E.
    Xi G.
    Wang H.
    Zou H.
    Li R.
    Hu Y.
    Wang Z.
    Sun Z.
    Wang, Huanran, 2018, Xi'an Jiaotong University (52): : 12 - 18
  • [44] Energy, exergy, and sensitivity analyses of underwater compressed air energy storage in an island energy system
    Wang, Zhiwen
    Xiong, Wei
    Carriveau, Rupp
    Ting, David S. -K.
    Wang, Zuwen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (06) : 2241 - 2260
  • [45] Thermodynamic analysis for a novel steam injection adiabatic compressed air energy storage hybrid system
    Ran, Peng
    Zhang, Haiyang
    Qiao, Yu
    Wang, Jing
    Li, Zheng
    Wang, Yase
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [46] Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system
    Ji, Wei
    Zhou, Yuan
    Sun, Yu
    Zhang, Wu
    An, Baolin
    Wang, Junjie
    ENERGY CONVERSION AND MANAGEMENT, 2017, 142 : 176 - 187
  • [47] Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage
    Liu, Zhan
    Liu, Xu
    Yang, Shanju
    Hooman, Kamel
    Yang, Xiaohu
    APPLIED ENERGY, 2021, 303
  • [48] Conventional and advanced exergy analyses of an underwater compressed air energy storage system
    Wang, Zhiwen
    Xiong, Wei
    Ting, David S. -K.
    Carriveau, Rupp
    Wang, Zuwen
    APPLIED ENERGY, 2016, 180 : 810 - 822
  • [49] Conceptual design of ocean compressed air energy storage system
    Lim, Saniel D.
    Mazzoleni, Andre P.
    Park, Joong-kyoo
    Ro, Paul I.
    Quinlan, Brendan
    2012 OCEANS, 2012,
  • [50] Conceptual Design of Ocean Compressed Air Energy Storage System
    Lim, Saniel D.
    Mazzoleni, Andre P.
    Park, Joong-kyoo
    Ro, Paul I.
    Quinlan, Brendan
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2013, 47 (02) : 70 - 81