Multivariate Models and Confidence Intervals: A Local Random Set Approach

被引:0
|
作者
Fetz, Thomas [1 ]
机构
[1] Univ Innsbruck, Unit Engn Math, A-6020 Innsbruck, Austria
关键词
Confidence intervals; non-parametric models of uncertainty; random sets; fuzzy sets; upper probability; independence; unknown interaction; Frechet bounds;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article is devoted to the propagation of families of confidence intervals obtained by non-parametric methods through multivariate functions comprising the semantics of confidence limits. At fixed confidence level, local random sets are defined whose aggregation admits the calculation of upper probabilities of events. In the multivariate case, a number of ways of combinations is highlighted to encompass independence and unknown interaction using random set independence and Frechet bounds. For all cases we derive formulas for the corresponding upper probabilities and elaborate how they relate. The methods are exemplified by means of an example from structural mechanics.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 50 条
  • [31] Confidence intervals for individualized performance models
    Van Dongen, Hans P. A.
    Mott, Christopher G.
    Huang, Jen-Kuang
    Mollicone, Daniel J.
    McKenzie, Frederic D.
    Dinges, David F.
    SLEEP, 2007, 30 (09) : 1083 - 1083
  • [32] Confidence Intervals in Generalized Regression Models
    Skovgaard, L. T.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2010, 173 : 696 - 697
  • [33] Confidence and Prediction Intervals for Pharmacometric Models
    Kummel, Anne
    Bonate, Peter L.
    Dingemanse, Jasper
    Krause, Andreas
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2018, 7 (06): : 360 - 373
  • [34] Confidence intervals for the hyperparameters in structural models
    Franco, Glaura C.
    Santos, Thiago R.
    Ribeiro, Juliana A.
    Cruz, F. R. B.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (03) : 486 - 497
  • [35] Prediction intervals for random-effects meta-analysis: A confidence distribution approach
    Nagashima, Kengo
    Noma, Hisashi
    Furukawa, Toshi A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1689 - 1702
  • [36] Confidence Intervals for Bias and Size Distortion in IV and Local Projections-IV Models
    Ganics, Gergely
    Inoue, Atsushi
    Rossi, Barbara
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (01) : 307 - 324
  • [37] Confidence intervals based on local linear smoother
    Chen, SX
    Qin, YS
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 89 - 99
  • [38] CONFIDENCE INTERVALS IN CAVALIERI SAMPLING WITH LOCAL ERRORS
    Garcia-Finana, Marta
    Keller, Simon S.
    Roberts, Neil
    ECS10: THE10TH EUROPEAN CONGRESS OF STEREOLOGY AND IMAGE ANALYSIS, 2009, : 241 - +
  • [39] Inverse set estimation and inversion of simultaneous confidence intervals
    Ren, Junting
    Telschow, Fabian J. E.
    Schwartzman, Armin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (04) : 1082 - 1109
  • [40] Confidence Intervals for Quantiles and Tolerance Intervals Based on Ordered Ranked Set Samples
    N. Balakrishnan
    T. Li
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 757 - 777