Multivariate Models and Confidence Intervals: A Local Random Set Approach

被引:0
|
作者
Fetz, Thomas [1 ]
机构
[1] Univ Innsbruck, Unit Engn Math, A-6020 Innsbruck, Austria
关键词
Confidence intervals; non-parametric models of uncertainty; random sets; fuzzy sets; upper probability; independence; unknown interaction; Frechet bounds;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article is devoted to the propagation of families of confidence intervals obtained by non-parametric methods through multivariate functions comprising the semantics of confidence limits. At fixed confidence level, local random sets are defined whose aggregation admits the calculation of upper probabilities of events. In the multivariate case, a number of ways of combinations is highlighted to encompass independence and unknown interaction using random set independence and Frechet bounds. For all cases we derive formulas for the corresponding upper probabilities and elaborate how they relate. The methods are exemplified by means of an example from structural mechanics.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 50 条
  • [1] MULTIVARIATE MODELS AND VARIABILITY INTERVALS: A LOCAL RANDOM SET APPROACH
    Fetz, Thomas
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2011, 19 (05) : 799 - 823
  • [2] Multivariate models of uncertainty: A local random set approach
    Fetz, Th.
    Oberguggenberger, M.
    STRUCTURAL SAFETY, 2010, 32 (06) : 417 - 424
  • [3] Multiple linear regression models for random intervals: a set arithmetic approach
    Marta García-Bárzana
    Ana Belén Ramos-Guajardo
    Ana Colubi
    Erricos J. Kontoghiorghes
    Computational Statistics, 2020, 35 : 755 - 773
  • [4] Multiple linear regression models for random intervals: a set arithmetic approach
    Garcia-Barzana, Marta
    Belen Ramos-Guajardo, Ana
    Colubi, Ana
    Kontoghiorghes, Erricos J.
    COMPUTATIONAL STATISTICS, 2020, 35 (02) : 755 - 773
  • [5] Confidence intervals for multivariate value at risk
    Goh, Y. L.
    Pooi, A. H.
    SCIENCEASIA, 2013, 39 : 70 - 74
  • [6] A Model Confidence Set approach to the combination of multivariate volatility forecasts
    Amendola, Alessandra
    Braione, Manuela
    Candila, Vincenzo
    Storti, Giuseppe
    INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (03) : 873 - 891
  • [7] Confidence intervals for the variance component of random-effects linear models
    Bottai, Matteo
    Orsini, Nicola
    STATA JOURNAL, 2004, 4 (04): : 429 - 435
  • [8] Confidence intervals of willingness-to-pay for random coefficient logit models
    Bliemer, Michiel C. J.
    Rose, John M.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2013, 58 : 199 - 214
  • [9] Bootstrap confidence intervals for local likelihood, local estimating equations and varying coefficient models
    Galindo, CD
    Liang, H
    Kauermann, G
    Carrol, RJ
    STATISTICA SINICA, 2001, 11 (01) : 121 - 134
  • [10] Random walk approximation of confidence intervals
    Murdoch, DJ
    QUALITY IMPROVEMENT THROUGH STATISTICAL METHODS, 1998, : 393 - 404