The Adaptable 4A Inversion (5AI): description and first XCO2 retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations

被引:7
|
作者
Dogniaux, Matthieu [1 ]
Crevoisier, Cyril [1 ]
Armante, Raymond [1 ]
Capelle, Virginie [1 ]
Delahaye, Thibault [1 ]
Casse, Vincent [1 ]
De Maziere, Martine [2 ]
Deutscher, Nicholas M. [3 ,4 ]
Feist, Dietrich G. [5 ,6 ,7 ]
Garcia, Omaira E. [8 ]
Griffith, David W. T. [3 ]
Hase, Frank [9 ]
Iraci, Laura T. [10 ]
Kivi, Rigel [11 ]
Morino, Isamu [12 ]
Notholt, Justus [4 ]
Pollard, David F. [13 ]
Roehl, Coleen M. [14 ]
Shiomi, Kei [15 ]
Strong, Kimberly [16 ]
Te, Yao [17 ]
Velazco, Voltaire A. [3 ]
Warneke, Thorsten [4 ]
机构
[1] PSL Res Univ, Lab Meteorol Dynam IPSL, CNRS,Ecole Normale Super, Ecole Polytech,Inst Polytech Paris,Sorbonne Univ, F-91120 Palaiseau, France
[2] Royal Belgian Inst Space Aeron, Brussels, Belgium
[3] Univ Wollongong, Ctr Atmospher Chem, Sch Earth Atmospher & Life Sci, Wollongong, NSW, Australia
[4] Univ Bremen, Bremen, Germany
[5] Max Planck Inst Biogeochem, Jena, Germany
[6] Ludwig Maximilians Univ Munchen, Lehrstuhl Phys Atmosphere, Munich, Germany
[7] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphere, Oberpfaffenhofen, Germany
[8] Izana Atmospher Res Ctr IARC, State Meteorol Agcy Spain AEMET, Tenerife, Spain
[9] Karlsruhe Inst Technol KIT, Inst Meteorol & Climate Res IMK ASF, Karlsruhe, Germany
[10] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[11] Finnish Meteorol Inst, Sodankyla, Finland
[12] Natl Inst Environm Studies NIES, Tsukuba, Ibaraki, Japan
[13] Natl Inst Water & Atmospher Res Ltd NIWA, Lauder, New Zealand
[14] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[15] Japan Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki, Japan
[16] Univ Toronto, Dept Phys, Toronto, ON, Canada
[17] PSL Univ, Sorbonne Univ, Lab Etud Rayonnement & Matiere Astrophys & Atmosp, CNRS,Observ Paris, F-75005 Paris, France
关键词
GOSAT SWIR XCO2; SPECTRAL-RESOLUTION; OPTICAL DEPTH; CO2; ALGORITHM; VALIDATION; DIOXIDE; SPECTROMETER; INSTRUMENT; SCIAMACHY;
D O I
10.5194/amt-14-4689-2021
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A better understanding of greenhouse gas surface sources and sinks is required in order to address the global challenge of climate change. Space-borne remote estimations of greenhouse gas atmospheric concentrations can offer the global coverage that is necessary to improve the constraint on their fluxes, thus enabling a better monitoring of anthro-pogenic emissions. In this work, we introduce the Adaptable 4A Inversion (5AI) inverse scheme that aims to retrieve geo-physical parameters from any remote sensing observation. The algorithm is based on the Optimal Estimation algorithm, relying on the Operational version of the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer forward model along with the Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information (GEISA) spectroscopic database. Here, the 5AI scheme is applied to retrieve the column-averaged dry air mole fraction of carbon dioxide (XCO2) from a sample of measurements performed by the Orbiting Carbon Observatory-2 (OCO-2) mission. Those have been selected as a compromise between coverage and the lowest aerosol content possible, so that the impact of scattering particles can be neglected, for computational time purposes. For air masses below 3.0, 5AI XCO2 retrievals successfully capture the latitudinal variations of CO2 and its seasonal cycle and long-term increasing trend. Comparison with ground-based observations from the Total Carbon Column Observing Network (TCCON) yields a bias of 1.30 +/- 1.32 ppm (parts per million), which is comparable to the standard deviation of the Atmospheric CO2 Observations from Space (ACOS) official products over the same set of soundings. These nonscattering 5AI results, however, exhibit an average difference of about 3 ppm compared to ACOS results. We show that neglecting scattering particles for computational time purposes can explain most of this difference that can be fully corrected by adding to OCO-2 measurements an average calculated-observed spectral residual correction, which encompasses all the inverse setup and forward differences between 5AI and ACOS. These comparisons show the reliability of 5AI as an optimal estimation implementation that is easily adaptable to any instrument designed to retrieve column-averaged dry air mole fractions of greenhouse gases.
引用
收藏
页码:4689 / 4706
页数:18
相关论文
共 47 条
  • [41] Quantification of regional net CO2 flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
    Yun, Jeongmin
    Liu, Junjie
    Byrne, Brendan
    Weir, Brad
    Ott, Lesley E.
    Mckain, Kathryn
    Baier, Bianca C.
    Gatti, Luciana V.
    Biraud, Sebastien C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2025, 25 (03) : 1725 - 1748
  • [42] Retrieval of XCO2 from simulated Orbiting Carbon Observatory measurements using the fast linearized R-2OS radiative transfer model
    Natraj, Vijay
    Boesch, Hartmut
    Spurr, Robert J. D.
    Yung, Yuk L.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D11)
  • [43] Retrievals of XCO2, XCH4 and XCO from portable, near-infrared Fourier transform spectrometer solar observations in Antarctica
    Pollard, David F. F.
    Hase, Frank
    Sha, Mahesh Kumar
    Dubravica, Darko
    Alberti, Carlos
    Smale, Dan
    EARTH SYSTEM SCIENCE DATA, 2022, 14 (12) : 5427 - 5437
  • [44] Seamless mapping of long-term (2010-2020) daily global XCO2 andXCH4 from the GreenhouseGases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and CAMS global greenhouse gas reanalysis (CAMS-EGG4) with a spatiotemporallyself-supervised fusion method
    Wang, Yuan
    Yuan, Qiangqiang
    Li, Tongwen
    Yang, Yuanjian
    Zhou, Siqin
    Zhang, Liangpei
    EARTH SYSTEM SCIENCE DATA, 2023, 15 (08) : 3597 - 3622
  • [45] Spatial Distribution of Urban Anthropogenic Carbon Emissions Revealed from the OCO-3 Snapshot XCO2 Observations: A Case Study of Shanghai
    Jia, Mengwei
    Li, Yingsong
    Jiang, Fei
    Feng, Shuzhuang
    Wang, Hengmao
    Wang, Jun
    Wu, Mousong
    Ju, Weimin
    REMOTE SENSING, 2025, 17 (06)
  • [46] Random Forest Model-Based Inversion of Aerosol Vertical Profiles in China Using Orbiting Carbon Observatory-2 Oxygen A-Band Observations
    Zhou, Xiao-Qing
    Liu, Hai-Lei
    Duan, Min-Zheng
    Chen, Bing
    Zhang, Sheng-Lan
    REMOTE SENSING, 2024, 16 (13)
  • [47] Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity
    Kiel, Matthaus
    Eldering, Annmarie
    Roten, Dustin D.
    Lin, John C.
    Feng, Sha
    Lei, Ruixue
    Lauvaux, Thomas
    Oda, Tomohiro
    Roehl, Coleen M.
    Blavier, Jean-Francois
    Iraci, Laura T.
    REMOTE SENSING OF ENVIRONMENT, 2021, 258