Assessment of the anaerobic degradation of six active pharmaceutical ingredients

被引:41
|
作者
Musson, Stephen E. [2 ]
Campo, Pablo [3 ]
Tolaymat, Thabet [1 ]
Suidan, Makram [3 ]
Townsend, Timothy G. [2 ]
机构
[1] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA
[2] Univ Florida, Dept Environm Engn Sci, Gainesville, FL 32611 USA
[3] Univ Cincinnati, Dept Civil & Environm Engn, Cincinnati, OH 45221 USA
基金
美国国家环境保护局;
关键词
Anaerobic degradation; Pharmaceutical; PPCP; Sorption; PERSONAL CARE PRODUCTS; COEFFICIENT K-D; AQUATIC ENVIRONMENT; TREATMENT PLANTS; MUSK FRAGRANCES; SEWAGE-SLUDGE; WASTE; ESTROGENS; BIODEGRADATION; DIGESTION;
D O I
10.1016/j.scitotenv.2009.11.042
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Research examined the anaerobic degradation of 17 alpha-ethynylestradiol, acetaminophen, acetylsalicylic acid, ibuprofen, metoprolol tartrate, and progesterone by methanogenic bacteria. Using direct sample analysis and respirometric testing, anaerobic degradation was examined with (a) each compound as the sole organic carbon source and (b) each compound at a lower concentration (250 mu g/L) and cellulose serving as the primary organic carbon source. The change in pharmaceutical concentration was determined following 7, 28, 56, and 112 days of anaerobic incubation at 37 degrees C. Only acetylsalicylic acid demonstrated significant degradation; the remaining compounds showed a mixture of degradation and abiotic removal mechanisms. Experimental results were compared with BIOWIN, an anaerobic degradation prediction model of the US Environmental Protection Agency. The BIOWIN model predicted anaerobic biodegradability of the compounds in the order: acetylsalicylic acid > metoprolol tartrate > ibuprofen > acetaminophen > 17 alpha-ethinylestradiol > progesterone. This corresponded well with the experimental findings which found degradability in the order: acetylsalicylic acid > metoprolol tartrate > acetaminophen > ibuprofen. Published by Elsevier BM.
引用
收藏
页码:2068 / 2074
页数:7
相关论文
共 50 条
  • [31] Stable isotopic characterization of active pharmaceutical ingredients
    Jasper, JP
    Westenberger, BJ
    Spencer, JA
    Buhse, LF
    Nasr, M
    [J]. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2004, 35 (01) : 21 - 30
  • [32] A sourcing strategy for active pharmaceutical ingredients (APIs)
    Clarke, GM
    Schnurrenberger, KP
    Scholl, B
    [J]. CHIMIA, 1998, 52 (06) : 257 - 259
  • [34] The regulation of highly potent active pharmaceutical ingredients
    Greenwald, S
    Bufano, M
    [J]. CHIMICA OGGI-CHEMISTRY TODAY, 2006, 24 (02) : 12 - 14
  • [35] Heat capacities of selected active pharmaceutical ingredients
    Stejfa, Vojtech
    Pokorny, Vaclav
    Mathers, Alex
    Ruzicka, Kvetoslav
    Fulem, Michal
    [J]. JOURNAL OF CHEMICAL THERMODYNAMICS, 2021, 163
  • [36] Polymorphism and Crystallization of Active Pharmaceutical Ingredients (APIs)
    Lu, Jie
    Rohani, Sohrab
    [J]. CURRENT MEDICINAL CHEMISTRY, 2009, 16 (07) : 884 - 905
  • [37] Active Pharmaceutical Ingredients, Ferments, Vitamins, Hormones
    Franke
    [J]. NERVENARZT, 1951, 22 (12): : 464 - 464
  • [38] Impurities in Drug Products and Active Pharmaceutical Ingredients
    Katny, M.
    Frankowski, M.
    [J]. CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2017, 47 (03) : 187 - 193
  • [39] Cocrystal and its Application in the Field of Active Pharmaceutical Ingredients and Food Ingredients
    Wang, Na
    Xie, Chuang
    Lu, Haijiao
    Guo, Nannan
    Lou, Yajing
    Su, Weiyi
    Hao, Hongxun
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (21) : 2339 - 2348
  • [40] Control of genotoxic impurities in active pharmaceutical ingredients
    Raillard, Stephen P.
    [J]. CHIMICA OGGI-CHEMISTRY TODAY, 2012, 30 (01) : 28 - 30