A global compactness result for singular elliptic problems involving critical Sobolev exponent

被引:65
|
作者
Cao, DM [1 ]
Peng, SJ
机构
[1] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Xiao Gan Univ, Dept Math, Xiao Gan, Peoples R China
关键词
Palais-Smale sequence; compactness; Sobolev and Hardy critical exponents;
D O I
10.1090/S0002-9939-02-06729-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N be a bounded domain such that 0 is an element of Omega, N greater than or equal to 3, 2* = 2N/N-2, lambda is an element of R, epsilon is an element of R. Let {u(n)} subset of H-0(1)(Omega) be a (P.S.) sequence of the functional E-lambda,E-epsilon(u) = 1/2 integral(Omega)(\delu\(2) - lambdau(2) / \x\(2) - epsilonu(2)) - 1/2* integral(Omega)\u\(2*). We study the limit behaviour of un and obtain a global compactness result.
引用
收藏
页码:1857 / 1866
页数:10
相关论文
共 50 条