A GLOBAL COMPACTNESS RESULT FOR QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV NONLINEARITIES AND HARDY POTENTIALS ON RN

被引:0
|
作者
Jin, Lingyu [1 ]
Wei, Suting [1 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China
关键词
p-Laplacian; compactness; positive solution; unbounded domain; Sobolev nonlinearity; POSITIVE SOLUTIONS; EQUATIONS; MULTIPLICITY; BIFURCATION; PRINCIPLE; EXPONENTS;
D O I
10.58997/ejde.2024.79
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the elliptic equation with critical Sobolev nonlinearity and Hardy potentials (-triangle)p(u )+ a(x)|u|(p-1)u - mu | u | (p - 1) u / | x | p = | u |( p & lowast; - 2) u + f(x, u), u is an element of W-1,W-p(R-N), where 0 < <mu> < min{ ( N - p ) /p(p ) , N (p- 1) ( N - p 2 )/ p p } , p & lowast; = Np/ N-p is the critical Sobolev exponent. Through a compactness analysis of the associated functional operator, we obtain the existence of positive solutions under certain assumptions on a(x) and f(x, u).
引用
收藏
页数:23
相关论文
共 50 条