Wavelet analysis and covariance structure of some classes of non-stationary processes

被引:6
|
作者
Guérin, CA
机构
[1] Chalmers Univ Technol, Dept Math & Stat, S-41296 Gothenburg, Sweden
[2] Fac Sci & Tech St Jerome, Lab Opt Electromagnet, F-13397 Marseille 20, France
关键词
wavelet analysis; stationary processes; locally stationary processes; stationary increments; fractional increments; fractional Brownian motion;
D O I
10.1007/BF02510146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Processes with stationary n-increments are known to be characterized by the stationarity of their continuous wavelet coefficients. We extend this result to the case of processes with stationary fractional increments and locally stationary processes. Then we give two applications of these properties. First, we derive the explicit covariance structure of processes with stationary n-increments. Second, for fractional Brownian motion, the stationarity of the fractional increments of order greater than the Hurst exponent is recovered.
引用
收藏
页码:403 / 425
页数:23
相关论文
共 50 条
  • [21] Predicting non-stationary processes
    Ryabko, Daniil
    Hutter, Marcus
    APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 477 - 482
  • [22] Surveillance of non-stationary processes
    Taras Lazariv
    Wolfgang Schmid
    AStA Advances in Statistical Analysis, 2019, 103 : 305 - 331
  • [23] Analysis of non-stationary vector fields using wavelet transforms
    Haus, BK
    Graber, HC
    OCEANS 2000 MTS/IEEE - WHERE MARINE SCIENCE AND TECHNOLOGY MEET, VOLS 1-3, CONFERENCE PROCEEDINGS, 2000, : 1521 - 1527
  • [24] Wavelet-Crosscorrelation Analysis: Non-Stationary Analysis of Neurophysiological Signals
    Y. Mizuno-Matsumoto
    S. Ukai
    R. Ishii
    S. Date
    T. Kaishima
    K. Shinosaki
    S. Shimojo
    M. Takeda
    S. Tamura
    T. Inouye
    Brain Topography, 2005, 17 : 237 - 252
  • [25] Wavelet-crosscorrelation analysis: Non-stationary analysis of neurophysiological signals
    Mizuno-Matsumoto, Y
    Ukai, S
    Ishii, R
    Date, S
    Kaishima, T
    Shinosaki, K
    Shimojo, S
    Takeda, M
    Tamura, S
    Inouye, T
    BRAIN TOPOGRAPHY, 2005, 17 (04) : 237 - 252
  • [26] Wavelet-based resolvent analysis of non-stationary flows
    Ballouz, Eric
    Lopez-Doriga, Barbara
    Dawson, Scott T. M.
    Bae, H. Jane
    JOURNAL OF FLUID MECHANICS, 2024, 999
  • [27] POWER SPECTRAL ANALYSIS OF NON-STATIONARY RANDOM PROCESSES
    PRIESTLEY, MB
    JOURNAL OF SOUND AND VIBRATION, 1967, 6 (01) : 86 - +
  • [28] Bayesian inference for non-stationary spatial covariance structure via spatial deformations
    Schmidt, AM
    O'Hagan, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 743 - 758
  • [29] Wavelet-based non-stationary response analysis of a friction base-isolated structure
    Basu, B
    Gupta, VK
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2000, 29 (11): : 1659 - 1676
  • [30] Wavelet-based non-stationary response analysis of a friction base-isolated structure
    Basu, Biswajit
    Gupta, Vinay K.
    Earthquake Engineering and Structural Dynamics, 2000, 29 (11) : 1659 - 1676