Explainable Artificial Intelligence Solution for Online Retail

被引:2
|
作者
Javaid, Kumail [1 ]
Siddiqa, Ayesha [2 ]
Naqvi, Syed Abbas Zilqurnain [2 ]
Ditta, Allah [3 ]
Ahsan, Muhammad [2 ]
Khan, M. A. [4 ]
Mahmood, Tariq [5 ]
Khan, Muhammad Adnan [6 ]
机构
[1] Univ South Asia, Dept Comp Sci, Lahore 54000, Pakistan
[2] Univ Engn & Technol, Dept Mechatron & Control Engn, Lahore 54000, Pakistan
[3] Univ Educ, Div Sci & Technol, Dept Informat Sci, Lahore 54000, Pakistan
[4] Riphah Int Univ, Fac Comp, Riphah Sch Comp & Innovat, Lahore Campus, Lahore 54000, Pakistan
[5] Univ Educ, Div Sci & Technol, Lahore 54000, Pakistan
[6] Gachon Univ, Dept Software, Pattern Recognit & Machine Learning Lab, Seongnam 13557, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 71卷 / 03期
关键词
Explainable artificial intelligence; online retail; neural network; random forest regression; BEHAVIOR;
D O I
10.32604/cmc.2022.022984
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence (AI) and machine learning (ML) help in making predictions and businesses to make key decisions that are beneficial for them. In the case of the online shopping business, it's very important to find trends in the data and get knowledge of features that helps drive the success of the business. In this research, a dataset of 12,330 records of customers has been analyzedwho visited an online shoppingwebsite over a period of one year. The main objective of this research is to find features that are relevant in terms of correctly predicting the purchasing decisions made by visiting customers and build ML models which could make correct predictions on unseen data in the future. The permutation feature importance approach has been used to get the importance of features according to the output variable (Revenue). Five ML models i.e., decision tree (DT), random forest (RF), extra tree (ET) classifier, Neural networks (NN), and Logistic regression (LR) have been used to make predictions on the unseen data in the future. The performance of each model has been discussed in detail using performance measurement techniques such as accuracy score, precision, recall, F1 score, and ROC-AUC curve. RF model is the bestmodel among all five chosen based on accuracy score of 90% and F1 score of 79% followed by extra tree classifier. Hence, our study indicates that RF model can be used by online retailing businesses for predicting consumer buying behaviour. Our research also reveals the importance of page value as a key feature for capturing online purchasing trends. This may give a clue to future businesses who can focus on this specific feature and can find key factors behind page value success which in turn will help the online shopping business.
引用
收藏
页码:4425 / 4442
页数:18
相关论文
共 50 条
  • [21] Drug discovery with explainable artificial intelligence
    José Jiménez-Luna
    Francesca Grisoni
    Gisbert Schneider
    Nature Machine Intelligence, 2020, 2 : 573 - 584
  • [22] Explainable and responsible artificial intelligence PREFACE
    Meske, Christian
    Abedin, Babak
    Klier, Mathias
    Rabhi, Fethi
    ELECTRONIC MARKETS, 2022, 32 (04) : 2103 - 2106
  • [23] A Survey on Explainable Artificial Intelligence for Cybersecurity
    Rjoub, Gaith
    Bentahar, Jamal
    Wahab, Omar Abdel
    Mizouni, Rabeb
    Song, Alyssa
    Cohen, Robin
    Otrok, Hadi
    Mourad, Azzam
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 5115 - 5140
  • [24] Scientific Exploration and Explainable Artificial Intelligence
    Carlos Zednik
    Hannes Boelsen
    Minds and Machines, 2022, 32 : 219 - 239
  • [25] Blockchain for explainable and trustworthy artificial intelligence
    Nassar, Mohamed
    Salah, Khaled
    Rehman, Muhammad Habib ur
    Svetinovic, Davor
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (01)
  • [26] Explainable artificial intelligence: an analytical review
    Angelov, Plamen P.
    Soares, Eduardo A.
    Jiang, Richard
    Arnold, Nicholas I.
    Atkinson, Peter M.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
  • [27] Is explainable artificial intelligence intrinsically valuable?
    Nathan Colaner
    AI & SOCIETY, 2022, 37 : 231 - 238
  • [28] Scientific Exploration and Explainable Artificial Intelligence
    Zednik, Carlos
    Boelsen, Hannes
    MINDS AND MACHINES, 2022, 32 (01) : 219 - 239
  • [29] A survey of explainable artificial intelligence decision
    Kong X.
    Tang X.
    Wang Z.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2021, 41 (02): : 524 - 536
  • [30] Explainable artificial intelligence: a comprehensive review
    Dang Minh
    H. Xiang Wang
    Y. Fen Li
    Tan N. Nguyen
    Artificial Intelligence Review, 2022, 55 : 3503 - 3568