Parrondo's Paradox for Tent Maps

被引:1
|
作者
Canovas, Jose S. [1 ]
机构
[1] Tech Univ Cartagena, Dept Appl Math & Stat, C Doctor Flemming Sn, Cartagena 30202, Spain
关键词
Parrondo's paradox; tent maps; topological entropy; piecewise linear maps; SEASONALITY;
D O I
10.3390/axioms10020085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dynamic Parrondo's paradox for the well-known family of tent maps. We prove that this paradox is impossible when we consider piecewise linear maps with constant slope. In addition, we analyze the paradox "simple + simple = complex" when a tent map with constant slope and a piecewise linear homeomorphism with two different slopes are considered.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Parrondo’s paradox from classical to quantum: A review
    Joel Weijia Lai
    Kang Hao Cheong
    [J]. Nonlinear Dynamics, 2020, 100 : 849 - 861
  • [42] Parrondo Paradox and Stock Investment
    Cho, Dongseob
    Lee, Jiyeon
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (04) : 543 - 552
  • [43] The quantum game interpretation for a special phenomenon of Parrondo's paradox
    Li, Rui
    Zhu, Yong-fei
    Guo, Jia-yi
    Wang, Lu
    Xie, Neng-gang
    [J]. CEIS 2011, 2011, 15
  • [44] Fractals Parrondo's Paradox in Alternated Superior Complex System
    Zhang, Yi
    Wang, Da
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [45] Construction of novel stochastic matrices for analysis of Parrondo's paradox
    Cheong, Kang Hao
    Soo, Wayne Wah Ming
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (20) : 4727 - 4738
  • [46] A new perspective on cooperation through the lens of Parrondo's paradox
    Cheong, Kang Hao
    [J]. PHYSICS OF LIFE REVIEWS, 2023, 46 : 267 - 269
  • [47] Maximal Parrondo’s Paradox for Classical and Quantum Markov Chains
    F. Alberto Grünbaum
    Michael Pejic
    [J]. Letters in Mathematical Physics, 2016, 106 : 251 - 267
  • [48] Maximal Parrondo's Paradox for Classical and Quantum Markov Chains
    Gruenbaum, F. Alberto
    Pejic, Michael
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (02) : 251 - 267
  • [49] Parrondo’s paradox in quantum walks with different shift operators
    Walczak, Zbigniew
    Bauer, Jaroslaw H.
    [J]. Quantum Information Processing, 2024, 23 (12)
  • [50] Quantum game interpretation for a special case of Parrondo's paradox
    Zhu, Yong-fei
    Xie, Neng-gang
    Ye, Ye
    Peng, Fa-rui
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (04) : 579 - 586