Dual-Stage Attention Based Spatio-Temporal Sequence Learning for Multi-Step Traffic Prediction

被引:2
|
作者
Cui, Ziqiang [1 ]
Zhao, Chunhui [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
multi-step traffic prediction; attention mechanism; sequence learning; spatial correlation; temporal correlation;
D O I
10.1016/j.ifacol.2020.12.1518
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic prediction has great significance including but not limited to mitigating traffic congestion, reducing traffic accidents, and reducing waiting time. At the same time, traffic prediction, especially multi-step prediction, faces many difficulties including temporal correlations and spatial correlations. We propose a dual-stage attention based spatio-temporal sequence learning for multi-step traffic prediction which can not only express temporal correlation and spatial correlation, but also can adaptively learn the contribution weights of different related roads and historical moments. More specifically, for spatial dependencies, we first generate the input vector for each historical moment considering the information of relevant road segments by the method of spatial region of support and further add the first-stage attention termed spatial attention to automatically determine the weight of each relevant road segment for each historical moment. For temporal dependencies, we use LSTM based encoder-decoder networks to fully learn the temporal characteristic and make multi-step prediction considering temporal correlation between multi steps. We further add the second-stage attention termed temporal attention in the decoder part to automatically learn the contribution of different historical moments to each prediction moment. In addition, we consider external factors including weather and holidays and characterize their impacts using fully connected networks. Finally, the effectiveness of the proposed method is evaluated using traffic data in Hangzhou, China Copyright (C) 2020 The Authors.
引用
下载
收藏
页码:17035 / 17040
页数:6
相关论文
共 50 条
  • [11] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2023, 16 (09): : 978 - 988
  • [12] Dynamic Spatio-temporal traffic flow prediction based on multi fusion graph attention network
    Cheng, Manru
    Jiang, Guo-Ping
    Song, Yurong
    Yang, Chen
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7285 - 7291
  • [13] Multi-scale Spatio-temporal Attention Network for Traffic Flow Prediction
    Li, Minghao
    Li, Jinhong
    Ta, Xuxiang
    Bai, Yanbo
    Hao, Xinzhe
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 294 - 305
  • [14] Spatio-Temporal Attention-based Graph Convolution Networks for Traffic Prediction
    Chongqing University, College of Computer Science, Chongqing, China
    Conf. Proc. IEEE Int. Conf. Syst. Man Cybern., 2022, (642-649): : 642 - 649
  • [15] A spatio-temporal sequence-to-sequence network for traffic flow prediction
    Cao, Shuqin
    Wu, Libing
    Wu, Jia
    Wu, Dan
    Li, Qingan
    INFORMATION SCIENCES, 2022, 610 : 185 - 203
  • [16] Spatio-Temporal Transformer with Clustering and Dilated Attention for Traffic Prediction
    Xu, Baowen
    Wang, Xuelei
    Liu, Chengbao
    Li, Shuo
    Li, Jingwei
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 1065 - 1071
  • [17] Spatio-Temporal Memory Augmented Multi-Level Attention Network for Traffic Prediction
    Liu, Yan
    Guo, Bin
    Meng, Jingxiang
    Zhang, Daqing
    Yu, Zhiwen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2643 - 2658
  • [18] Spatio-Temporal Meta Learning for Urban Traffic Prediction
    Pan, Zheyi
    Zhang, Wentao
    Liang, Yuxuan
    Zhang, Weinan
    Yu, Yong
    Zhang, Junbo
    Zheng, Yu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (03) : 1462 - 1476
  • [19] Multi-step short-term wind power prediction based on spatio-temporal graph convolutional networks
    Liu, Zheng
    Xiao, SiYuan
    Liu, Hongliang
    2023 6th International Conference on Renewable Energy and Power Engineering, REPE 2023, 2023, : 352 - 357
  • [20] Multi-step short-term wind power prediction based on spatio-temporal graph convolutional networks
    Liu, Zheng
    Xiao, SiYuan
    Liu, Hongliang
    2023 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING, REPE 2023, 2023, : 352 - 357