General theory of nonresonant wave interaction: Giant soliton shift in photonic band gap materials

被引:13
|
作者
Tkeshelashvili, L
Pereira, S
Busch, K
机构
[1] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[2] Univ Laval, Ctr Opt Photon & Laser, Ste Foy, PQ G1K 7P4, Canada
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] Univ Cent Florida, Sch Opt CREOL & FPCE, Orlando, FL 32816 USA
来源
EUROPHYSICS LETTERS | 2004年 / 68卷 / 02期
关键词
D O I
10.1209/epl/i2004-10181-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonresonant interaction of nonlinear waves in one-dimensional photonic band gap materials is investigated analytically and numerically. We derive highly accurate analytical formulae that determine the phase shift experienced by nonlinear waves during nonresonant interaction. The case of nonresonant interaction of Bragg and gap solitons is considered in detail. We show that the phase shift of the interacting solitons should be experimentally observable, and can be used as a probe to determine the existence and the parameters of a gap soliton.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [21] Ordered and disordered photonic band gap materials
    McPhedran, RC
    Botten, LC
    Asatryan, AA
    Nicorovici, NA
    de Sterke, CM
    Robinson, PA
    AUSTRALIAN JOURNAL OF PHYSICS, 1999, 52 (05): : 791 - 809
  • [22] Dipole-dipole interaction in photonic-band-gap materials doped with nanoparticles
    Singh, Mahi R.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [23] Soliton pulse compression in photonic band-gap fibers.
    Ouzounov, DG
    Hensley, CJ
    Gaeta, AL
    Venkateraman, N
    Gallagher, MT
    Koch, KW
    OPTICS EXPRESS, 2005, 13 (16) : 6153 - 6159
  • [24] Higher-band gap soliton formation in defocusing photonic lattices
    Kip, Detlef
    Rueter, Christian E.
    Dong, Rong
    Wang, Zhe
    Xu, Jingjun
    OPTICS LETTERS, 2008, 33 (18) : 2056 - 2058
  • [25] Shift of the photonic band gap in two photonic crystal/liquid crystal composites
    Mertens, G
    Röder, T
    Schweins, R
    Huber, K
    Kitzerow, HS
    APPLIED PHYSICS LETTERS, 2002, 80 (11) : 1885 - 1887
  • [26] Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials
    Lidorikis, E
    Sigalas, MM
    Economou, EN
    Soukoulis, CM
    PHYSICAL REVIEW B, 2000, 61 (20) : 13458 - 13464
  • [27] Six wave mixing process in photonic band gap
    Sun, Yanyong
    Mahesar, Abdul Rasheed
    Wang, Zhiguo
    Chen, Haixia
    Zhang, Yunzhe
    Gong, Rui
    Zhang, Yanpeng
    LASER PHYSICS, 2017, 27 (07)
  • [28] Superluminal propagation in plasma photonic band gap materials
    Ojha, S. P.
    Thapa, K. B.
    Singh, S. K.
    OPTIK, 2008, 119 (02): : 81 - 85
  • [29] PHOTONIC BAND GAP MATERIALS AND MONOLAYER SOLAR CELL
    Aly, Arafa H.
    Sayed, Hassan
    SURFACE REVIEW AND LETTERS, 2018, 25 (05)
  • [30] Photonic band gap materials: Technology, applications and challenges
    Johri, M.
    Ahmed, Y. A.
    Bezboruah, T.
    CURRENT SCIENCE, 2007, 92 (10): : 1361 - 1365