State of Charge Estimation for Lithium-Ion Battery via MILS Algorithm Based on Ensemble Kalman Filter

被引:4
|
作者
Yan, Quanchun [1 ,2 ]
Yuan, Kangkang [1 ]
Gu, Wen [2 ]
Li, Chenlong [2 ]
Sun, Guoqiang [1 ]
Liu, Yanan [2 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 211100, Jiangsu, Peoples R China
[2] Jiangsu Frontier Elect Power Technol Co Ltd, Nanjing 211102, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
24;
D O I
10.1155/2021/8869415
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate state of charge (SOC) is great significant for lithium-ion battery to maximize its performance and prevent it from overcharging or overdischarging. This paper presents an ensemble Kalman filter- (EnKF-) based SOC estimation algorithm for lithium-ion battery. Firstly, the lithium-ion battery is modeled by the first-order RC equivalent circuit, and the multi-innovation least square (MILS) algorithm is used to perform online parameter identification of the model parameters. Then, the ensemble Kalman filter (EnKF) is introduced to estimate the state of charge. Finally, two typical experiments including constant current discharge experiment and cycling dynamic stress test are applied to evaluate the performance of the joint algorithm of MILS and EnKF. The experimental results show that the joint algorithm-based ensemble Kalman filter can achieve fast tracking and higher estimation accuracy for lithium-ion battery SOC.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter
    Gholizade-Narm, Hossein
    Charkhgard, Mohammad
    IET POWER ELECTRONICS, 2013, 6 (09) : 1833 - 1841
  • [22] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [23] Estimation of Lithium-Ion Battery State of Charge for Electric Vehicles Based on Dual Extended Kalman Filter
    Fang, Yu
    Xiong, Rui
    Wang, Jun
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 574 - 579
  • [24] Lithium-ion Battery State of Charge Estimation Model Based on Kalman Filtering Algorithm and Equivalent Circuit
    Wang, Xiao-Tian
    Zhang, Ze-Zheng
    Wang, Jie-Sheng
    Zhang, Song-Bo
    Liu, Xun
    ENGINEERING LETTERS, 2024, 32 (07) : 1266 - 1274
  • [25] State of Charge (SOC) Estimation for Lithium-Ion Battery Cell Using Extended Kalman Filter
    Ucuncu, Murat
    Altindag, Arda
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 503 - 509
  • [26] A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter
    Chen, Yixing
    Huang, Deqing
    Zhu, Qiao
    Liu, Weiqun
    Liu, Congzhi
    Xiong, Neng
    ENERGIES, 2017, 10 (09)
  • [27] Joint estimation of state of charge and state of health for lithium-ion battery based on dual adaptive extended Kalman filter
    Li, Jiabo
    Ye, Min
    Gao, Kangping
    Xu, Xinxin
    Wei, Meng
    Jiao, Shengjie
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 13307 - 13322
  • [28] State of Charge (SOC) Estimation of Lithium-ion Battery Based on Adaptive Square Root Unscented Kalman Filter
    Wang Kai
    Feng Xiao
    Pang Jinbo
    Ren Jun
    Duan Chongxiong
    Li Liwei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 9499 - 9516
  • [29] Lithium-ion battery state-of-charge estimation based on a dual extended Kalman filter and BPNN correction
    Xing, Likun
    Ling, Liuyi
    Wu, Xianyuan
    CONNECTION SCIENCE, 2022, 34 (01) : 2332 - 2363
  • [30] Improved State-of-Charge and Voltage estimation of a Lithium-ion battery based on Adaptive Extended Kalman Filter
    Velivela, Naga Prudhvi
    Guha, Arijit
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,