Nonlinear stability of bifurcating front solutions for the Taylor-Couette problem

被引:0
|
作者
Eckmann, JP [1 ]
Schneider, G
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[2] Univ Bayreuth, Inst Math, D-95440 Bayreuth, Germany
来源
关键词
modulated fronts; diffusive behavior;
D O I
10.1002/1521-4001(200011)80:11/12<745::AID-ZAMM745>3.0.CO;2-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Taylor-Couette problem in an infinitely extended cylindrical domain. There exist modulated front solutions which describe the spreading of the stable Taylor vortices into the region of the unstable Couette flow. These transient solutions have the form of a front-like envelope advancing in the laboratory frame and leaving behind the stationary, spatially periodic Taylor vortices. We prove the nonlinear stability of these solutions with respect to small spatially localized perturbations.
引用
收藏
页码:745 / 753
页数:9
相关论文
共 50 条
  • [41] Nonlinear defects separating spiral waves in Taylor-Couette flow
    Hoffmann, Ch.
    Heise, M.
    Altmeyer, S.
    Abshagen, J.
    Pinter, A.
    Pfister, G.
    Luecke, M.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [42] A NUMERICAL INVESTIGATION OF THE SCHAEFFER HOMOTOPY IN THE PROBLEM OF TAYLOR-COUETTE FLOWS
    ANSON, DK
    CLIFFE, KA
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 426 (1871): : 331 - 342
  • [43] The cavitating Taylor-Couette flow
    Reinke, Peter
    Schmidt, Marcus
    Beckmann, Tom
    PHYSICS OF FLUIDS, 2018, 30 (10)
  • [44] Taylor-Couette flow with temperature fluctuations: Time periodic solutions
    Feireisl, Eduard
    Kwon, Young-Sam
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (06): : 1193 - 1214
  • [45] Fully nonlinear mode competition in magnetised Taylor-Couette flow
    Ayats, R.
    Deguchi, K.
    Mellibovsky, F.
    Meseguer, A.
    JOURNAL OF FLUID MECHANICS, 2020, 897
  • [46] On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation
    Arkeryd, L.
    Nouri, A.
    JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (2-4) : 401 - 443
  • [47] Numerical study of bifurcation solutions of spherical Taylor-Couette flow
    袁礼
    傅德薰
    马延文
    Science China Mathematics, 1996, (02) : 187 - 196
  • [48] Phase slip solutions in magnetically modulated Taylor-Couette flow
    Hollerbach, Rainer
    Khan, Farzana
    ACTA MECHANICA, 2016, 227 (02) : 311 - 319
  • [49] Stability of compressible Taylor-Couette flow. Asymptotical analysis
    Lipatov, I. I.
    14TH INTERNATIONAL COUETTE TAYLOR WORKSHOP, 2005, 14 : 113 - 117
  • [50] On a Taylor-Couette Type Bifurcation for the Stationary Nonlinear Boltzmann Equation
    L. Arkeryd
    A. Nouri
    Journal of Statistical Physics, 2006, 124 : 401 - 443