Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants

被引:41
|
作者
Qiao, Wei Hua
Zhao, Xiang Yu
Li, Wei
Luo, Yan
Zhang, Xian Sheng [1 ]
机构
[1] Shandong Agr Univ, Coll Life Sci, Shandong Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China
[2] Peking Univ, Coll Life Sci, Beijing 100871, Peoples R China
关键词
a root-specific vacuolar Na+/H+ antiporter; salt tolerance; function analysis; Agropyron elongatum;
D O I
10.1007/s00299-007-0354-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Agropyron elongatum, a species in grass family, has a strong tolerance to salt stress. To study the molecular mechanism of Agropyron elongatum in salt tolerance, we isolated a homolog of Na+/H+ antiporters from the root tissues of Agropyron plants. Sequence analysis revealed that this gene encodes a putative vacuolar Na+/H+ antiporter and was designated as AeNHX1. The AeNHX1-GFP fusion protein was clearly targeted to the vacuolar membrane in a transient transfection assay. Northern analysis indicated that AeNHX1 was expressed in a root-specific manner. Expression of AeNHX1 in yeast Na+/H+ antiporter mutants showed function complementation. Further, overexpression of AeNHX1 promoted salt tolerance of Arabidopsis plants, and improved osmotic adjustment and photosynthesis which might be responsible for normal development of transgenic plants under salt stress. Similarly, AeNHX1 also functioned in transgenic Festuca plants. The results suggest that this gene might function in the roots of Agropyron plants, and its expression is involved in the improvement of salt tolerance.
引用
收藏
页码:1663 / 1672
页数:10
相关论文
共 50 条
  • [41] Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance
    Li, Yonghong
    Zhang, Yanzi
    Feng, Fengjuan
    Liang, Dong
    Cheng, Lailiang
    Ma, Fengwang
    Shi, Shouguo
    PLANT CELL TISSUE AND ORGAN CULTURE, 2010, 102 (03) : 337 - 345
  • [42] Overexpression of BvNHX1, a novel tonoplast Na+/H+ antiporter gene from sugar beet (Betavulgaris), confers enhanced salt tolerance in transgenic tobacco
    Zhang, Xin-Miao
    Wu, Guo-Qiang
    Wei, Ming
    Kang, Hong-Xia
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 34 (1) : 211 - 223
  • [43] Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance
    Yonghong Li
    Yanzi Zhang
    Fengjuan Feng
    Dong Liang
    Lailiang Cheng
    Fengwang Ma
    Shouguo Shi
    Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 102 : 337 - 345
  • [44] Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana
    Mishra, Sagarika
    Alavilli, Hemasundar
    Lee, Byeong-Ha
    Panda, Sanjib Kumar
    Sahoo, Lingaraj
    PLOS ONE, 2014, 9 (10):
  • [45] Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants
    Brini, Faical
    Hanin, Moez
    Mezghani, Imed
    Berkowitz, Gerald A.
    Masmoudi, Khaled
    JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (02) : 301 - 308
  • [46] A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato
    Wang, Bing
    Zhai, Hong
    He, Shaozhen
    Zhang, Huan
    Ren, Zhitong
    Zhang, Dongdong
    Liu, Qingchang
    SCIENTIA HORTICULTURAE, 2016, 201 : 153 - 166
  • [47] The novel Na+/H+ antiporter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast
    Zhou, Yang
    Yang, Chenglong
    Hu, Yanping
    Yin, Xiaochang
    Li, Ruimei
    Fu, Shaoping
    Zhu, Baibi
    Guo, Jianchun
    Jiang, Xingyu
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (03)
  • [48] The novel Na+/H+ antiporter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast
    Yang Zhou
    Chenglong Yang
    Yanping Hu
    Xiaochang Yin
    Ruimei Li
    Shaoping Fu
    Baibi Zhu
    Jianchun Guo
    Xingyu Jiang
    Acta Physiologiae Plantarum, 2018, 40
  • [49] Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (VuNHX1) from drought hardy legume, cowpea for salt tolerance
    Sagarika Mishra
    Hemasundar Alavilli
    Byeong-ha Lee
    Sanjib Kumar Panda
    Lingaraj Sahoo
    Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 120 : 19 - 33
  • [50] Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (VuNHX1) from drought hardy legume, cowpea for salt tolerance
    Mishra, Sagarika
    Alavilli, Hemasundar
    Lee, Byeong-ha
    Panda, Sanjib Kumar
    Sahoo, Lingaraj
    PLANT CELL TISSUE AND ORGAN CULTURE, 2015, 120 (01) : 19 - 33