In this paper, we deal with those applications of textual image compression where high compression ratio and maintaining or improving the visual quality and readability of the compressed images are of main concern. In textual images, most of the information exists in the edge regions; therefore, the compression problem can be studied in the framework of region-of-interest (ROI) coding. In this paper, the Set Partitioning in Hierarchical Trees (SPIHT) coder is used in the framework of ROI coding along with some image enhancement techniques in order to remove the leakage effect which occurs in the wavelet-based low-bit-rate compression. We evaluated the compression performance of the proposed method with respect to some qualitative and quantitative measures. The qualitative measures include the averaged mean opinion scores (MOS) curve along with demonstrating some outputs in different conditions. The quantitative measures include two proposed modified PSNR measures and the conventional one. Comparing the results of the proposed method with those of three conventional approaches, DjVu, JPEG2000, and SPIHT coding, showed that the proposed compression method considerably outperformed the others especially from the qualitative aspect. The proposed method improved the MOS by 20 and 30%, in average, for high- and low-contrast textual images, respectively. In terms of the modified and conventional PSNR measures, the proposed method outperformed DjVu and JPEG2000 up to 0.4 dB for high-contrast textual images at low bit rates. In addition, compressing the high contrast images using the proposed ROI technique, compared to without using this technique, improved the average textual PSNR measure up to 0.5 dB, at low bit rates.