We consider the Schrodinger operator L = -Delta thorn V on R-n, where n >= 3 and the nonnegative potential V belongs to reverse Holder class RHs for s > n/2. In this paper, we discuss the boundedness of Riesz transform T-alpha,T-beta = (VL-beta)-L-alpha and its commutator at the endpoint. We show that T-alpha,T-beta is bounded from L-1(R-n) into L-p0(R-n), and prove that [b, T-alpha,T-beta] is bounded from H-L(1) (R-n) (Hardy space related to L) into L-p0(R-n), where p(0) = n/n-2(beta-alpha) and b belongs to the BMO type space introduced by Bongioanni, Harboure and Salinas.
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Fan, Zhijie
Li, Ji
论文数: 0引用数: 0
h-index: 0
机构:
Macquarie Univ, Dept Math, Macquarie Pk, NSW 2109, AustraliaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Li, Ji
McDonald, Edward
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
McDonald, Edward
Sukochev, Fedor
论文数: 0引用数: 0
h-index: 0
机构:
UNSW, Sch Math & Stat, Kensington, NSW 2052, AustraliaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Sukochev, Fedor
Zanin, Dmitriy
论文数: 0引用数: 0
h-index: 0
机构:
UNSW, Sch Math & Stat, Kensington, NSW 2052, AustraliaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China