An intelligent switch with back-propagation neural network based hybrid power system

被引:4
|
作者
Perdana, R. H. Y. [1 ]
Fibriana, F. [2 ]
机构
[1] State Polytech Malang, Dept Elect Engn, Malang, Indonesia
[2] Univ Negeri Semarang, Fac Math & Nat Sci, Dept Integrated Sci, Semarang, Indonesia
关键词
D O I
10.1088/1742-6596/983/1/012056
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Optimization of drilling and blasting parameters based on back-propagation neural network
    Wang, Xin-Min
    Zhao, Bin
    Wang, Xian-Lai
    Zhang, Qin-Li
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2009, 40 (05): : 1411 - 1416
  • [32] A Method of Arc Priority Determination based on Back-Propagation Neural Network
    Shen Ying
    Qian Jianguo
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 38 - 41
  • [33] Deformation Prediction of Landslide Based on Improved Back-propagation Neural Network
    Chen, Huangqiong
    Zeng, Zhigang
    COGNITIVE COMPUTATION, 2013, 5 (01) : 56 - 62
  • [34] Research and Realization of Hardware Back-Propagation Neural Network Based on FPGA
    Guo, Fei
    Luo, Xiao
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 2469 - 2474
  • [35] Deformation Prediction of Landslide Based on Improved Back-propagation Neural Network
    Huangqiong Chen
    Zhigang Zeng
    Cognitive Computation, 2013, 5 : 56 - 62
  • [36] A approach to Enterprises Credit Evaluation based on back-propagation neural network
    Wu, JX
    Wang, ZJ
    PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2003, : 162 - 167
  • [37] Computational model of grid cells based on back-propagation neural network
    Li, Baozhong
    Liu, Yanming
    Lai, Lei
    ELECTRONICS LETTERS, 2022, 58 (03) : 93 - 96
  • [38] Based on Privacy Preserving for Back-propagation Neural Network Learning Algorithm
    Wang, Jian
    ADVANCED MATERIALS AND INFORMATION TECHNOLOGY PROCESSING, PTS 1-3, 2011, 271-273 : 857 - 862
  • [39] Voltage Control Based on a Back-Propagation Artificial Neural Network Algorithm
    Ramirez-Hernandez, Jazmin
    Juarez-Sandoval, Oswaldo-Ulises
    Hernandez-Gonzalez, Leobardo
    Hernandez-Ramirez, Abigail
    Olivares-Dominguez, Raul-Sebastian
    PROCEEDINGS OF THE XXII 2020 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2020), VOL 4, 2020,
  • [40] Life prediction of slotted screen based on back-propagation neural network
    Deng, Fucheng
    Deng, Ziqiang
    Liang, He
    Wang, Lihua
    Hu, Haitao
    Xu, Yi
    ENGINEERING FAILURE ANALYSIS, 2021, 119