Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts

被引:15
|
作者
Morgan, Robyn L. [1 ]
Zhou, Huanbin [1 ]
Lehto, Elizabeth [1 ,2 ]
Nguyen, Ngoc [1 ]
Bains, Ashvir [1 ]
Wang, Xiaoqiang [3 ]
Ma, Wenbo [1 ,4 ]
机构
[1] Univ Calif Riverside, Ctr Plant Cell Biol, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Grad Program Biochem, Riverside, CA 92521 USA
[3] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73402 USA
[4] Univ Calif Riverside, Inst Integrat Genom Biol, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
PROGRAMMED CELL-DEATH; RESISTANCE PROTEINS; ADAPTIVE EVOLUTION; AVIRULENCE GENES; PV; VESICATORIA; INNATE IMMUNITY; VIRULENCE; SECRETION; SEQUENCE; YOPJ;
D O I
10.1111/j.1365-2958.2010.07107.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P>The type III secretion systems (T3SS) and secreted effectors (T3SEs) are essential virulence factors in Gram-negative bacteria. During the arms race, plants have evolved resistance (R) genes to detect specific T3SEs and activate defence responses. However, this immunity can be efficiently defeated by the pathogens through effector evolution. HopZ1 of the plant pathogen Pseudomonas syringae is a member of the widely distributed YopJ T3SE family. Three alleles are known to be present in P. syringae, with HopZ1a most resembling the ancestral allelic form. In this study, molecular mechanisms underlying the sequence diversification-enabled HopZ1 allelic specificity is investigated. Using domain shuffling experiments, we present evidence showing that a central domain upstream of the conserved catalytic cysteine residue determines HopZ1 recognition specificity. Random and targeted mutagenesis identified three amino acids involved in HopZ1 allelic specificity. Particularly, the exchange of cysteine141 in HopZ1a with lysine137 at the corresponding position in HopZ1b abolished HopZ1a recognition in soybean. This position is under strong positive selection, suggesting that the cysteine/lysine mutation might be a key step driving the evolution of HopZ1. Our data support a model in which sequence diversification imposed by the plant R gene-associated immunity has driven HopZ1 evolution by allowing allele-specific substrate-binding.
引用
收藏
页码:437 / 455
页数:19
相关论文
共 50 条
  • [31] Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence
    Yang, Li
    Teixeira, Paulo Jose Pereira Lima
    Biswas, Surojit
    Finkel, Omri M.
    He, Yijian
    Salas-Gonzalez, Isai
    English, Marie E.
    Epple, Petra
    Mieczkowski, Piotr
    Dangl, Jeffery L.
    CELL HOST & MICROBE, 2017, 21 (02) : 156 - 168
  • [32] The Pseudomonas syringae type III effector HopG1 triggers necrotic cell death that is attenuated by AtNHR2B
    Rodriguez-Puerto, Catalina
    Chakraborty, Rupak
    Singh, Raksha
    Rocha-Loyola, Perla
    Rojas, Clemencia M.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [33] The Pseudomonas syringae Type III Effector HopG1 Induces Actin Remodeling to Promote Symptom Development and Susceptibility during Infection
    Shimono, Masaki
    Lu, Yi-Ju
    Porter, Katie
    Kvitko, Brian H.
    Henty-Ridilla, Jessica
    Creason, Allison
    He, Sheng Yang
    Chang, Jeff H.
    Staiger, Christopher J.
    Day, Brad
    PLANT PHYSIOLOGY, 2016, 171 (03) : 2239 - 2255
  • [34] The Pseudomonas syringae type III effector HopG1 triggers necrotic cell death that is attenuated by AtNHR2B
    Catalina Rodríguez-Puerto
    Rupak Chakraborty
    Raksha Singh
    Perla Rocha-Loyola
    Clemencia M. Rojas
    Scientific Reports, 12
  • [35] The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity
    Hann, Dagmar R.
    Dominguez-Ferreras, Ana
    Motyka, Vaclav
    Dobrev, Petre I.
    Schornack, Sebastian
    Jehle, Anna
    Felix, Georg
    Chinchilla, Delphine
    Rathjen, John P.
    Boller, Thomas
    NEW PHYTOLOGIST, 2014, 201 (02) : 585 - 598
  • [36] A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana
    Wei, Chia-Fong
    Kvitko, Brian H.
    Shimizu, Rena
    Crabill, Emerson
    Alfano, James R.
    Lin, Nai-Chun
    Martin, Gregory B.
    Huang, Hsiou-Chen
    Collmer, Alan
    PLANT JOURNAL, 2007, 51 (01): : 32 - 46
  • [37] Plant Signals Anticipate the Induction of the Type III Secretion System in Pseudomonas syringae pv. actinidiae, Facilitating Efficient Temperature-Dependent Effector Translocation
    Puttilli, Maria Rita
    Danzi, Davide
    Correia, Cristiana
    Brandi, Jessica
    Cecconi, Daniela
    Manfredi, Marcello
    Marengo, Emilio
    Santos, Conceicao
    Spinelli, Francesco
    Polverari, Annalisa
    Vandelle, Elodie
    MICROBIOLOGY SPECTRUM, 2022, 10 (06):
  • [38] A Draft Genome Sequence of Pseudomonas syringae pv. tomato T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of Pseudomonas syringae pv. tomato DC3000
    Almeida, Nalvo F.
    Yan, Shuangchun
    Lindeberg, Magdalen
    Studholme, David J.
    Schneider, David J.
    Condon, Bradford
    Liu, Haijie
    Viana, Carlos J.
    Warren, Andrew
    Evans, Clive
    Kemen, Eric
    MacLean, Dan
    Angot, Aurelie
    Martin, Gregory B.
    Jones, Jonathan D.
    Collmer, Alan
    Setubal, Joao C.
    Vinatzer, Boris A.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (01) : 52 - 62
  • [39] Noncanonical calcium binding motif controls folding of HopQ1, a Pseudomonas syringae type III secretion effector, in a pH-dependent manner
    Giska, Fabian
    Rymaszewski, Wojciech
    Lichocka, Malgorzata
    Piechocki, Marcin
    Kwiatkowski, Jakub
    Poznanski, Jaroslaw
    Gorecka, Magdalena
    Krzymowska, Magdalena
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Phosphorylation of HopQ1, a Type III Effector from Pseudomonas syringae, Creates a Binding Site for Host 14-3-3 Proteins
    Giska, Fabian
    Lichocka, Malgorzata
    Piechocki, Marcin
    Dadlez, Michal
    Schmelzer, Elmon
    Hennig, Jacek
    Krzymowska, Magdalena
    PLANT PHYSIOLOGY, 2013, 161 (04) : 2049 - 2061