Dynamical Systems Model of RNA Velocity Improves Inference of Single-cell Trajectory, Pseudo-time and Gene Regulation

被引:13
|
作者
Liu, Ruishan [1 ]
Pisco, Angela Oliveira [2 ]
Braun, Emelie [3 ]
Linnarsson, Sten [3 ,4 ]
Zou, James [1 ,2 ,4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA USA
[2] Chan Zuckerberg Biohub, San Francisco, CA USA
[3] Karolinska Inst, Stockholm, Sweden
[4] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
NETWORK INFERENCE; EXPRESSION;
D O I
10.1016/j.jmb.2022.167606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent development in inferring RNA velocity from single-cell RNA-seq opens up exciting new vista into developmental lineage and cellular dynamics. However, the estimated velocity only gives a snapshot of how the transcriptome instantaneously changes in individual cells, and it does not provide quantitative predictions and insights about the whole system. In this work, we develop RNA-ODE, a principled com-putational framework that extends RNA velocity to quantify systems level dynamics and improve single-cell data analysis. We model the gene expression dynamics by an ordinary differential equation (ODE) based formalism. Given a snapshot of gene expression at one time, RNA-ODE is able to predict and extrapolate the expression trajectory of each cell by solving the dynamic equations. Systematic experiments on simulations and on new data from developing brain demonstrate that RNA-ODE substan-tially improves many aspects of standard single-cell analysis. By leveraging temporal dynamics, RNA-ODE more accurately estimates cell state lineage and pseudo-time compared to previous state-of-the-art methods. It also infers gene regulatory networks and identifies influential genes whose expres-sion changes can decide cell fate. We expect RNA-ODE to be a Swiss army knife that aids many facets of-cell RNA-seq analysis. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] TIPD: A Probability Distribution-Based Method for Trajectory Inference from Single-Cell RNA-Seq Data
    Jiang Xie
    Yiting Yin
    Jiao Wang
    Interdisciplinary Sciences: Computational Life Sciences, 2021, 13 : 652 - 665
  • [32] MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning
    Zhang, Yongqing
    Wang, Maocheng
    Wang, Zixuan
    Liu, Yuhang
    Xiong, Shuwen
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [33] IntroGRN: Gene Regulatory Network Inference from Single-Cell RNA Data Based on Introspective VAE
    Li, Rongyuan
    Wu, Jingli
    Li, Gaoshi
    Liu, Jiafei
    Liu, Jinlu
    Xuan, Junbo
    Deng, Zheng
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 427 - 438
  • [34] Inference of genomic lesions from single-cell RNA-seq in myeloma improves functional intraclonal and interclonal analysis
    Lazzaroni, Francesca
    Matera, Antonio
    Marella, Alessio
    Maeda, Akihiro
    Castellano, Giancarlo
    Marchetti, Alfredo
    Fabris, Sonia
    Pioggia, Stefania
    Silvestris, Ilaria
    Ronchetti, Domenica
    Lonati, Silvia
    Fabbiano, Giuseppina
    Traini, Valentina
    Taiana, Elisa
    Porretti, Laura
    Colombo, Federico
    De Magistris, Claudio
    Scopetti, Margherita
    Barbieri, Marzia
    Pettine, Loredana
    Torricelli, Federica
    Neri, Antonino
    Passamonti, Francesco
    Lionetti, Marta
    Da Via, Matteo Claudio
    Bolli, Niccol
    BLOOD ADVANCES, 2024, 8 (15) : 3972 - 3984
  • [35] redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer
    Xie, Kaikun
    Liu, Zehua
    Chen, Ning
    Chen, Ting
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (02) : 292 - 305
  • [36] Gene regulation and lens development: insights from single-cell RNA-seq analysis
    Cvekl, A.
    Mcgreal, R.
    Yilin, Z.
    Phil, W.
    Larry, D.
    Deyou, Z.
    ACTA OPHTHALMOLOGICA, 2018, 96 : 27 - 27
  • [37] redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer
    Kaikun Xie
    Zehua Liu
    Ning Chen
    Ting Chen
    Genomics,Proteomics & Bioinformatics, 2021, (02) : 292 - 305
  • [38] redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-cell RNA-seq Data and Applications in Cancer
    Kaikun Xie
    Zehua Liu
    Ning Chen
    Ting Chen
    Genomics,Proteomics & Bioinformatics, 2021, 19 (02) : 292 - 305
  • [39] TiC2D: Trajectory Inference From Single-Cell RNA-Seq Data Using Consensus Clustering
    Gan, Yanglan
    Li, Ning
    Guo, Cheng
    Zou, Guobing
    Guan, Jihong
    Zhou, Shuigeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2512 - 2522
  • [40] Single-cell RNA-seq of Drosophila miranda testis reveals the evolution and trajectory of germline sex chromosome regulation
    Wei, Kevin H-C.
    Chatla, Kamalakar
    Bachtrog, Doris
    PLOS BIOLOGY, 2024, 22 (04)