Mathematical modeling of the convective drying of fruits and vegetables

被引:14
|
作者
Ghiaus, AG
Margaris, DP
Papanikas, DG
机构
[1] Tech Univ Civil Engn Bucharest, Thermodynam & Heat Transfer Dept, RO-73232 Bucuresti 39, Romania
[2] Univ Patras, Fluid Mech Lab, GR-26500 Patras, Greece
关键词
grapes; drying; modeling; heat transfer; mass transfer;
D O I
10.1111/j.1365-2621.1997.tb12234.x
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
A proposed mathematical model, based on physical and transport properties and mass and energy balances, was developed for unsteady transport of momentum, heat and mass in granular beds of agricultural products (fruits and vegetables) under convective drying conditions. The model utilized water sorption isotherm equations and the change in solid density due to shrinkage. The unsteady-state differential equations for temperature and moisture profiles within the product were numerically solved using a central finite difference scheme. Experimental data on drying conditions and product drying rates agreed with the calculated results. A design and operation parameters optimization scheme, tested for grapes, resulted in minimized drying time and high quality dried product.
引用
收藏
页码:1154 / 1157
页数:4
相关论文
共 50 条
  • [21] FREEZE-DRYING OF FRUITS AND VEGETABLES
    IWANIW, DC
    MITTAL, GS
    CANADIAN INSTITUTE OF FOOD SCIENCE AND TECHNOLOGY JOURNAL-JOURNAL DE L INSTITUT CANADIEN DE SCIENCE ET TECHNOLOGIE ALIMENTAIRES, 1987, 20 (05): : 323 - 323
  • [22] Mathematical modeling of convective thin layer drying of basil leaves
    Kadam, D. M.
    Goyal, R. K.
    Gupta, M. K.
    JOURNAL OF MEDICINAL PLANTS RESEARCH, 2011, 5 (19): : 4721 - 4730
  • [23] DRYING OF FRUITS AND VEGETABLES - CELLULAR HYDROTION
    STUTE, R
    ZEITSCHRIFT FUR ERNAHRUNGSWISSENSCHAFT, 1973, 12 : 50 - 65
  • [24] Convective Drying of Apple: Mathematical Modeling and Determination of some Quality Parameters
    Seiiedlou, Sadegh
    Ghasemzadeh, Hamid R.
    Hamdami, Nasser
    Talati, Faramarz
    Moghaddam, Mohammad
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2010, 12 (02) : 171 - 178
  • [25] Mathematical Modeling of the Process of Convective Drying of Materials Taking into Account their Shrinkage
    Rudobashta, S. P.
    Kartashov, E. M.
    Zueva, G. A.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2020, 93 (06) : 1394 - 1401
  • [26] Mathematical modeling and quality parameters of Salicornia fruticosa dried by convective drying
    Rodríguez-Ramos, F.
    Leiva-Portilla, D.
    Rodríguez-Núñez, K.
    Pacheco, P.
    Briones-Labarca, V.
    Journal of Food Science and Technology, 2021, 58 (02) : 474 - 483
  • [27] Convective Drying of Wastewater Sludge: Introduction of Shrinkage Effect in Mathematical Modeling
    Bennamoun, Lyes
    Crine, Michel
    Leonard, Angelique
    DRYING TECHNOLOGY, 2013, 31 (06) : 643 - 654
  • [28] DRYING BEHAVIOR AND MATHEMATICAL MODELING OF DAIRY CATTLE MANURE IN A CONVECTIVE DRYER
    Amin-Nayyeri, M.
    Kianmehr, M. H.
    Arabhosseini, A.
    Hassan-Beygi, S. R.
    Aghbashlo, M.
    APPLIED ENGINEERING IN AGRICULTURE, 2010, 26 (04) : 689 - 697
  • [29] EXPERIMENTAL INVESTIGATION AND MATHEMATICAL MODELING OF CONVECTIVE DRYING KINETICS OF WHITE RADISH
    Dasore, Abhishek
    Konijeti, Ramakrishna
    Puppala, Naveen
    FRONTIERS IN HEAT AND MASS TRANSFER, 2019, 13
  • [30] Mathematical Modeling of Green Pepper Drying in Microwave-convective Dryer
    Darvishi, H.
    Khoshtaghaza, M. H.
    Najafi, G.
    Nargesi, F.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2013, 15 (03): : 457 - 465