Using Variant Directional Dis(similarity) Measures for the Task of Textual Entailment

被引:0
|
作者
Gupta, Anand [1 ]
Kaur, Manpreet [1 ]
Garg, Disha [2 ]
Saini, Karuna [2 ]
机构
[1] NSIT, Dept Comp Sci, New Delhi, India
[2] NSIT, Dept Informat Technol, New Delhi, India
来源
DATA SCIENCE AND ANALYTICS | 2018年 / 799卷
关键词
D O I
10.1007/978-981-10-8527-7_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Textual entailment (TE) is a task used to determine degree of semantic inference between a pair of text fragments in many natural language processing applications. In literature, a single document summarization framework has exploited TE to establish degree of connectedness between pair of sentences in a text summarization method. Despite noteworthy performance of the method, the extensive resource requirements and slow speed of the TE tool render it impractical to generate summaries in real time scenarios. This has stimulated the authors to propose the use of available directional dis(similarity) (distance and similarity) measures in place of TE system. The present paper aims to find a suitable directional measure which can successfully replace the TE system and decrease the overall runtime of the summarization method. Therefore, state-of-the-art directional dis(similarity) measures are implemented in the same summarization framework to present a comparative analysis of performance of all the measures. The experiments are conducted on DUC 2002 dataset and the results are evaluated using ROUGE tool to find the most suitable directional measure of textual entailment.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 50 条
  • [21] Recognizing Textual Entailment Using Inference Phenomenon
    Ren, Han
    Li, Xia
    Feng, Wenhe
    Wan, Jing
    [J]. CHINESE LEXICAL SEMANTICS, CLSW 2017, 2018, 10709 : 293 - 302
  • [22] Generating Textual Entailment Using Residual LSTMs
    Guo, Maosheng
    Zhang, Yu
    Zhao, Dezhi
    Liu, Ting
    [J]. CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, CCL 2017, 2017, 10565 : 263 - 272
  • [23] A knowledge-based textual entailment approach applied to the AVE task
    Ferrandez, O.
    Terol, R. M.
    Munoz, R.
    Martinez-Barco, P.
    Palomar, M.
    [J]. EVALUATION OF MULTILINGUAL AND MULTI-MODAL INFORMATION RETRIEVAL, 2007, 4730 : 490 - +
  • [24] INESC-ID@ASSIN: Measuring Semantic Similarity and Recognizing Textual Entailment
    Fialho, Pedro
    Marques, Ricardo
    Martins, Bruno
    Coheur, Luisa
    Quaresma, Paulo
    [J]. LINGUAMATICA, 2016, 8 (02): : 33 - 42
  • [25] Automatic Classification of Research Documents using Textual Entailment
    Ojokoh, Bolanle Adefowoke
    Omisore, Olatunji Mumini
    Samuel, Oluwarotimi Williams
    [J]. PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), 2015, : 251 - 252
  • [26] Short-answer grading using textual entailment
    Basak, Rohini
    Naskar, Sudip Kumar
    Gelbukh, Alexander
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4909 - 4919
  • [27] Textual entailment recognition using inversion transduction grammars
    Wu, Dekai
    [J]. MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 299 - 308
  • [28] Recognizing Textual Entailment Using a Machine Learning Approach
    Rios Gaona, Miguel Angel
    Gelbukh, Alexander
    Bandyopadhyay, Sivaji
    [J]. ADVANCES IN SOFT COMPUTING - MICAI 2010, PT II, 2010, 6438 : 177 - 185
  • [29] Machine Translation Evaluation using Textual Entailment for Arabic
    El Marouani, Mohamed
    Boudaa, Tarik
    Enneya, Nourddine
    [J]. 2020 SEVENTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2020, : 148 - 152
  • [30] Textual Entailment Using Machine Translation Evaluation Metrics
    Saikh, Tanik
    Naskar, Sudip Kumar
    Ekbal, Asif
    Bandyopadhyay, Sivaji
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2017), PT I, 2018, 10761 : 317 - 328