Tauberian theorems for vector-valued Fourier and Laplace transforms

被引:0
|
作者
Chill, R [1 ]
机构
[1] Univ Ulm, Abt Math 5, D-89069 Ulm, Germany
关键词
Tauberian theorem; Fourier transform; Laplace transform; asymptotically almost periodic; analytic Radon-Nikodym property; Cauchy problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space and f is an element of L-loc(1)(R; X) be absolutely regular (i.e. integrable when divided by some polynomial). If the distributional Fourier transform of f is locally integrable then f converges to 0 at infinity in some sense to be made precise. From this result we deduce some Tauberian theorems for Fourier and Laplace transforms, which can be improved if the underlying Banach space has the analytic Radon-Nikodym property.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 50 条