A stability based validity method for fuzzy clustering

被引:21
|
作者
Falasconi, M. [1 ]
Gutierrez, A. [2 ,3 ]
Pardo, M. [1 ,4 ]
Sberveglieri, G. [1 ]
Marco, S. [2 ,3 ]
机构
[1] Univ Brescia, Dept Chem & Phys Engn & Mat, SENSOR Lab, I-25123 Brescia, Italy
[2] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain
[3] IBEC, Artificial Olfact Grp, Barcelona 08028, Spain
[4] Max Planck Inst Mol Genet, Computat Mol Biol Dept, D-14195 Berlin, Germany
关键词
Fuzzy c-means; Cluster validity; Number of clusters; Cluster stability; RESAMPLING METHOD; VALIDATION; INDEX; EXTENSION; NUMBER;
D O I
10.1016/j.patcog.2009.10.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An important goal in cluster analysis is the internal validation of results using an objective criterion. Of particular relevance in this respect is the estimation of the optimum number of clusters capturing the intrinsic structure of your data. This paper proposes a method to determine this optimum number based on the evaluation of fuzzy partition stability under bootstrap resampling. The method is first characterized on synthetic data with respect to hyper-parameters, like the fuzzifier, and spatial clustering parameters, such as feature space dimensionality, clusters degree of overlap, and number of clusters. The method is then validated on experimental datasets. Furthermore, the performance of the proposed method is compared to that obtained using a number of traditional fuzzy validity rules based on the cluster compactness-to-separation criteria. The proposed method provides accurate and reliable results, and offers better generalization capabilities than the classical approaches. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1292 / 1305
页数:14
相关论文
共 50 条
  • [21] A New Fuzzy Clustering Validity Index With a Median Factor for Centroid-Based Clustering
    Wu, Chih-Hung
    Ouyang, Chen-Sen
    Chen, Li-Wen
    Lu, Li-Wei
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (03) : 701 - 718
  • [22] Clustering Validity Evaluation Method Based on Two Typical Clustering Algorithms
    Wang, Guan
    Xing, Cheng
    Wang, Jie-Sheng
    Wang, Hong-Yu
    Liu, Jia-Xu
    IAENG International Journal of Computer Science, 2022, 49 (03):
  • [23] Combination Evaluation Method of Fuzzy C-Mean Clustering Validity Based on Hybrid Weighted Strategy
    Wang, H. Y.
    Wang, J. S.
    Wang, G.
    IEEE ACCESS, 2021, 9 : 27239 - 27261
  • [24] Cluster Validity For Kernel Fuzzy Clustering
    Havens, Timothy C.
    Bezdek, James C.
    Palaniswami, Marimuthu
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [25] A cluster validity index for fuzzy clustering
    Zhang, Yunjie
    Wang, Weina
    Zhang, Xiaona
    Li, Yi
    INFORMATION SCIENCES, 2008, 178 (04) : 1205 - 1218
  • [26] Fuzzy Clustering Validity for Spatial Data
    Hu Chunchun
    Meng Lingkui
    Shi Wenzhong
    GEO-SPATIAL INFORMATION SCIENCE, 2008, 11 (03) : 191 - 196
  • [27] A cluster validity index for fuzzy clustering
    Wu, KL
    Yang, MS
    PATTERN RECOGNITION LETTERS, 2005, 26 (09) : 1275 - 1291
  • [28] A New Validity Function For Fuzzy Clustering
    Li, Yang
    Yu, Fusheng
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL I, 2009, : 462 - 465
  • [29] CLUSTER VALIDITY FOR FUZZY CLUSTERING ALGORITHMS
    WINDHAM, MP
    FUZZY SETS AND SYSTEMS, 1981, 5 (02) : 177 - 185
  • [30] Cluster validity for fuzzy criterion clustering
    Esogbue, AO
    Liu, BD
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (11-12) : 95 - 100