Quantum confinement induced strain in quantum dots

被引:10
|
作者
Zhang, Xinyuan
Sharma, Pradeep [1 ]
Johnson, H. T.
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[2] Univ Houston, Dept Phys, Houston, TX 77204 USA
[3] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA
关键词
D O I
10.1103/PhysRevB.75.155319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate quantum confinement induced strain in quantum dots. While the impact of mechanical strain on the electronic structure of quantum dots is well studied, the "reverse" effect remains relatively unexplored. Even in the complete absence of external stress, for very small sizes (1-3 nm range), the electronic structure change due to quantum confinement may induce a strain in the quantum dot, which in turn will further alter the electronic structure. Despite the limitations of an envelope function approach for small sizes, a multiband analytical model is developed to make explicit the qualitative features of this phenomenon with physical interpretation in terms of acoustic polarons. We quantitatively predict the induced strain due to quantum confinement and the polaron binding energy for the example cases of Si and GaAs. The Si polaron binding energy calculated from the developed model compares favorably with both our density-functional and semiempirical atomistic calculations.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Si quantum dots in silicon nitride: Quantum confinement and defects
    Goncharova, L. V.
    Nguyen, P. H.
    Karner, V. L.
    D'Ortenzio, R.
    Chaudhary, S.
    Mokry, C. R.
    Simpson, P. J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 118 (22)
  • [32] Comparison between quantum confinement effects of quantum wires and dots
    Li, JB
    Wang, LW
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (21) : 4012 - 4015
  • [33] Quantum Confinement Effect in the Absorption Spectra of Graphene Quantum Dots
    Yang, Leon
    Reed, Devon
    Adu, Kofi W.
    Arriaga, Ana Laura Elias
    [J]. MRS ADVANCES, 2019, 4 (3-4) : 205 - 210
  • [34] The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots
    Askari, Sadegh
    Svrcek, Vladmir
    Maguire, Paul
    Mariotti, Davide
    [J]. ADVANCED MATERIALS, 2015, 27 (48) : 8011 - 8016
  • [35] Si quantum dots in silicon nitride: Quantum confinement and defects
    20155101703295
    [J]. Goncharova, L.V. (lgonchar@uwo.ca), 1600, American Institute of Physics Inc. (118):
  • [36] Calculation of the quantum efficiency for the absorption on confinement levels in quantum dots
    Vladimir Iancu
    Mihai Razvan Mitroi
    Ana-Maria Lepadatu
    Ionel Stavarache
    Magdalena Lidia Ciurea
    [J]. Journal of Nanoparticle Research, 2011, 13 : 1605 - 1612
  • [37] Quantum confinement effects on the optical phonons of CdTe quantum dots
    de Paula, AM
    Barbosa, LC
    Cruz, CHB
    Alves, OL
    Sanjurjo, JA
    Cesar, CL
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1998, 23 (05) : 1103 - 1106
  • [38] Silicon Clathrate Quantum Dots and the Allotropic Dependence of Quantum Confinement
    Brawand, Nicholas P.
    Lusk, Mark T.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (46): : 27091 - 27096
  • [39] Lead salt quantum dots: The limit of strong quantum confinement
    Wise, FW
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (11) : 773 - 780
  • [40] Quantum Confinement Effect in the Absorption Spectra of Graphene Quantum Dots
    Leon Yang
    Devon Reed
    Kofi W. Adu
    Ana Laura Elias Arriaga
    [J]. MRS Advances, 2019, 4 : 205 - 210