Kinetic Turbulence Simulations at Extreme Scale on Leadership-Class Systems

被引:11
|
作者
Wang, Bei [1 ]
Ethier, Stephane [2 ]
Tang, William [1 ,2 ]
Williams, Timothy [5 ]
Ibrahim, Khaled Z. [3 ]
Madduri, Kamesh [3 ,4 ]
Williams, Samuel [3 ]
Oliker, Leonid [3 ]
机构
[1] Princeton Univ, Princeton Inst Computat Sci & Engn, Princeton, NJ 08544 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ USA
[3] Lawrence Berkeley Natl Lab, Comp Res Div, Berkeley, CA USA
[4] Penn State Univ, Comp Sci Engn, University Pk, PA 16802 USA
[5] Argonne Natl Lab, Argonne Leadership Comp Fac, Argonne, IL 60439 USA
关键词
GYROKINETIC PARTICLE SIMULATION; MICROTURBULENCE;
D O I
10.1145/2503210.2503258
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCF and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Comment on "Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas'' - Reply
    Howes, G. G.
    Cowley, S. C.
    Dorland, W.
    Hammett, G. W.
    Quataert, E.
    Schekochihin, A. A.
    Tatsuno, T.
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [32] Intermittency in flux driven kinetic simulations of trapped ion turbulence
    Darmet, G.
    Ghendrih, Ph.
    Sarazin, Y.
    Garbet, X.
    Grandgirard, V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (01) : 53 - 58
  • [33] Numerical simulations to study whistler turbulence by kinetic Alfven wave
    Sharma, R. P.
    Batra, K.
    Dwivedi, N. K.
    JOURNAL OF PLASMA PHYSICS, 2011, 77 : 715 - 724
  • [34] Lattice kinetic simulations of 3-D MHD turbulence
    Breyiannis, G.
    Valougeorgis, D.
    COMPUTERS & FLUIDS, 2006, 35 (8-9) : 920 - 924
  • [35] Evidence of critical balance in kinetic Alfven wave turbulence simulations
    TenBarge, J. M.
    Howes, G. G.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [36] Generation of magnetic holes in fully kinetic simulations of collisionless turbulence
    Roytershteyn, Vadim
    Karimabadi, Homa
    Roberts, Aaron
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2041):
  • [37] Direct kinetic Simulations of ion temperature gradient driven turbulence
    Watanabe, TH
    Sugama, H
    PLASMA PHYSICS, 2003, 669 : 463 - 466
  • [38] Variable Resolution in Scale-Resolved Simulations of Turbulence
    Carlsson, Magnus
    Wallin, Stefan
    Girimaji, Sharath
    FLOW TURBULENCE AND COMBUSTION, 2024,
  • [39] FULL-SCALE SIMULATIONS OF IONOSPHERIC LANGMUIR TURBULENCE
    Eliasson, Bengt
    MODERN PHYSICS LETTERS B, 2013, 27 (08):
  • [40] Nature of Kinetic Scale Turbulence in the Earth's Magnetosheath
    Chen, C. H. K.
    Boldyrev, S.
    ASTROPHYSICAL JOURNAL, 2017, 842 (02):