The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes

被引:77
|
作者
von Treifeldt, Joel E. [1 ,2 ]
Firestein, Konstantin L. [1 ,2 ]
Fernando, Joseph F. S. [1 ,2 ]
Zhang, Chao [1 ,2 ]
Siriwardena, Dumindu P. [1 ,2 ]
Lewis, Courtney-Elyce M. [1 ,2 ]
Golberg, Dmitri, V [1 ,2 ]
机构
[1] Queensland Univ Technol QUT, Ctr Mat Sci, 2 George St, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol QUT, Sch Chem & Phys, 2 George St, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会;
关键词
MXenes; Ti3C2; 2D materials; Zn-ion battery; Nanotechnology; Mechanical activation; ELECTRODE MATERIALS; ION BATTERIES; LONG-LIFE; PERFORMANCE; COMPOSITES; SPECTROSCOPY; EXFOLIATION; TEMPERATURE; CAPACITANCE; ANODES;
D O I
10.1016/j.matdes.2020.109403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesis ofMXenes is a lively area of research in today'smaterials science community. Pure carbide and nitride samples with tunable properties and crystal size are desirable for the implementation of these promising young materials in the wider economy. Herein, the preparation of Ti3AlC2 MAX phase has been studied with a viewto improving the quality and purity of the resultant Ti(3)C(2)MXene. Room-temperature high-energy ballmilling is exploited for the mechanical activation of elemental powder mixtures, which, along with adjusted input stoichiometry and heat treatment, achieves high-purity and highly crystalline Ti3AlC2 and Ti3C2 with rather quick and easy methodology. Several approaches are offered, as not all of these preparation steps are strictly necessary for acquiringMXene. The structure and properties of Ti3C2 are shownto depend on the preparation history and precursor characteristics. The MXene is additionally shown to perform well as a substrate for binder-free electrochemical cell electrodes; high electrical conductivity and cycling stability render this MXene@Zn anode a viable option for aqueous Zn-ion systems. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] 2D Ti3AlC2 and Ti3C2 nanosheets: Excellent optical limiting materials for laser protection
    Du, Binjian
    Zhao, Zhenyu
    Xin, Yi
    Ren, Zihan
    Xing, Fei
    Zhang, Fang
    OPTICAL MATERIALS, 2024, 147
  • [42] Effects of TiC and Ti3AlC2 addition on combustion synthesis of Ti3AlC2 powders
    Guo, JM
    Chen, KX
    Ge, ZB
    Zhou, HP
    Ning, XS
    JOURNAL OF INORGANIC MATERIALS, 2003, 18 (01) : 251 - 256
  • [43] Features of a nano-twist phase in the nanolayered Ti3AlC2 MAX phase
    Guenole, Julien
    Taupin, Vincent
    Vallet, Maxime
    Yu, Wenbo
    Guitton, Antoine
    SCRIPTA MATERIALIA, 2022, 210
  • [44] Preparation and performance of MAX phase Ti3AlC2 by in-situ reaction of Ti-Al-C system
    Gao, Lina
    Han, Ting
    Guo, Zhaolong
    Zhang, Xin
    Pan, Deng
    Zhou, Shengyin
    Chen, Wenge
    Li, Shufeng
    ADVANCED POWDER TECHNOLOGY, 2020, 31 (08) : 3533 - 3539
  • [45] Molten salt synthesis and formation mechanism of Ti3AlC2: A new path from Ti2AlC to Ti3AlC2
    Zhong, Yi
    Liu, Ying
    Jin, Na
    Lin, Zifeng
    Ye, Jinwen
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (09) : 5567 - 5579
  • [46] On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with palladium at 900 °C
    Bentzel, G. W.
    Sokol, M.
    Griggs, J.
    Lang, A. C.
    Barsoum, M. W.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 771 : 1103 - 1110
  • [47] Influence of Ti3AlC2 on microstructure and thermal mechanical properties of Al2O3-Ti3AlC2-C refractories
    Chen, Junfeng
    Li, Nan
    Yan, Wen
    Wei, Yaowu
    Han, Bingqiang
    CERAMICS INTERNATIONAL, 2016, 42 (12) : 14126 - 14134
  • [48] Effects of Ti3AlC2 Content on Cu/Ti3AlC2 Composites by Hot Pressing Method
    Huang Zhenying
    Zhai Hongxiang
    Li Mengqi
    Liu Xiu
    RARE METAL MATERIALS AND ENGINEERING, 2011, 40 : 529 - 532
  • [49] The reaction between Ti3AlC2 and Cu in the synthesis process of Cu/Ti3AlC2 composites
    Peng, Chunqing
    Wang, Chang-An
    Song, Yang
    Huang, Yong
    HIGH-PERFORMANCE CERAMICS IV, PTS 1-3, 2007, 336-338 : 1374 - 1376
  • [50] Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases
    Plummer, Gabriel
    Tucker, Garritt J.
    PHYSICAL REVIEW B, 2019, 100 (21)