CORONAL HEATING DRIVEN BY A MAGNETIC GRADIENT PUMPING MECHANISM IN SOLAR PLASMAS

被引:10
|
作者
Tan, Baolin [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing 100012, Peoples R China
来源
ASTROPHYSICAL JOURNAL | 2014年 / 795卷 / 02期
关键词
plasmas; stars: coronae; Sun: atmosphere; Sun: chromosphere; Sun: corona; ALFVEN WAVES; QUIET SUN; BRIGHT POINTS; FIELDS; CHROMOSPHERE; EMISSION; CHANNELS; TOKAMAK; MODEL; LOOPS;
D O I
10.1088/0004-637X/795/2/140
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s(-1) in the chromosphere and about 130 km s(-1) in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The temperature structure of solar coronal plasmas
    Feldman, Uri
    Landi, Enrico
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [22] RADIATIVE LOSSES OF SOLAR CORONAL PLASMAS
    Colgan, J.
    Abdallah, J., Jr.
    Sherrill, M. E.
    Foster, M.
    Fontes, C. J.
    Feldman, U.
    ASTROPHYSICAL JOURNAL, 2008, 689 (01): : 585 - 592
  • [23] On the relationship between coronal heating, magnetic flux, and the density of the solar wind
    Riley, Pete
    Mikic, Z.
    Lionello, R.
    Linker, J. A.
    Schwardron, N. A.
    McComas, D. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [24] Solar coronal heating from small-scale magnetic braids
    Chitta, L. P.
    Peter, H.
    Parenti, S.
    Berghmans, D.
    Auchere, F.
    Solanki, S. K.
    Aznar Cuadrado, R.
    Schuehle, U.
    Teriaca, L.
    Mandal, S.
    Barczynski, K.
    Buchlin, E.
    Harra, L.
    Kraaikamp, E.
    Long, D. M.
    Rodriguez, L.
    Schwanitz, C.
    Smith, P. J.
    Verbeeck, C.
    Zhukov, A. N.
    Liu, W.
    Cheung, M. C. M.
    ASTRONOMY & ASTROPHYSICS, 2022, 667
  • [25] Solar coronal heating by forced magnetic reconnection: Multiple reconnection events
    Jain, R
    Browning, P
    Kusano, K
    PHYSICS OF PLASMAS, 2005, 12 (01) : 1 - 12
  • [26] TURBULENCE-DRIVEN CORONAL HEATING AND IMPROVEMENTS TO EMPIRICAL FORECASTING OF THE SOLAR WIND
    Woolsey, Lauren N.
    Cranmer, Steven R.
    ASTROPHYSICAL JOURNAL, 2014, 787 (02):
  • [27] Electric fields in solar magnetic structures due to gradient-driven instabilities: heating and acceleration of particles
    Vranjes, J.
    Poedts, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 400 (04) : 2147 - 2152
  • [28] MAGNETIC-FIELDS, PLASMAS, AND CORONAL HOLES - INNER SOLAR-SYSTEM
    BURLAGA, LF
    SPACE SCIENCE REVIEWS, 1979, 23 (02) : 201 - 216
  • [29] A New Mechanism of Coronal Heating
    L.C. Lee
    Space Science Reviews, 2001, 95 : 95 - 106
  • [30] Convection-driven emergence of small-scale magnetic fields and their role in coronal heating and solar wind acceleration
    Isobe, H.
    Proctor, M. R. E.
    Weiss, N. O.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 679 (01): : L57 - L60