ON THE MAXIMAL DIRECTIONAL HILBERT TRANSFORM

被引:5
|
作者
Laba, I. [1 ]
Marinelli, A. [1 ]
Pramanik, M. [1 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hilbert transform; maximal directional Hilbert transform; tree system; SINGULAR-INTEGRALS; ARBITRARY SETS; KAKEYA SETS; OPERATORS; DIFFERENTIATION;
D O I
10.1007/s10476-019-0821-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any dimension n >= 2, we consider the maximal directional Hilbert transform HU69pt}parallel to HU parallel to p -> p >= Cp,|_{p \to p}} \geq {C_{p,n}}\sqrt {\log \# U} $$\end{document}where #U denotes the cardinality of U. As a consequence, the maximal directional Hilbert transform associated with an infinite set of directions cannot be bounded on L-p(Double-struck capital R-n) for any n >= 2 and any p is an element of (1,infinity). This completes a result of Karagulyan [11], who proved a similar statement for n = 2 and p = 2.
引用
收藏
页码:535 / 568
页数:34
相关论文
共 50 条