Maximal theorems for the directional Hilbert transform on the plane

被引:35
|
作者
Lacey, Michael T. [1 ]
Li, Xiaochun
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90055 USA
关键词
Hilbert transform; Fourier series; maximal function; pointwise convergence;
D O I
10.1090/S0002-9947-06-03869-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Schwartz function f on the plane and a non-zero v is an element of R-2 define the Hilbert transform of f in the direction v to be H-v f( x) = p. v. integral(R) f(x - vy) dy/y. Let zeta be a Schwartz function with frequency support in the annulus 1 <= |xi| <= 2, and zeta f = zeta * f. We prove that the maximal operator sup(|v|= 1) |H-v zeta f| maps L-2 into weak L-2, and L-p into L-p for p > 2. The L-2 estimate is sharp. The method of proof is based upon techniques related to the pointwise convergence of Fourier series. Indeed, our main theorem implies this result on Fourier series.
引用
收藏
页码:4099 / 4117
页数:19
相关论文
共 50 条