Hilbert series, machine learning, and applications to physics

被引:9
|
作者
Bao, Jiakang [1 ]
He, Yang-Hui [1 ,2 ,3 ]
Hirst, Edward [1 ]
Hofscheier, Johannes [4 ]
Kasprzyk, Alexander [4 ]
Majumder, Suvajit [1 ]
机构
[1] Univ London, Dept Math, London EC1V 0HB, England
[2] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[3] NanKai Univ, Sch Phys, Tianjin 300071, Peoples R China
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.physletb.2022.136966
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ~1 mean absolute error, whilst classifiers predict dimension and Gorenstein index to > 90% accuracy with ~0.5% standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding 95%. Neural networks (NNs) exhibited success identifying HS from a Gorenstein ring to the same order of accuracy, whilst generation of "fake " HS proved trivial for NNs to distinguish from those associated to the three-dimensional Fano varieties considered. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Physics-informed machine learning and its structural integrity applications: state of the art
    Zhu, Shun-Peng
    Wang, Lanyi
    Luo, Changqi
    Correia, Jose A. F. O.
    De Jesus, Abilio M. P.
    Berto, Filippo
    Wang, Qingyuan Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2260):
  • [32] Discussing the spectrum of physics-enhanced machine learning: a survey on structural mechanics applications
    Haywood-Alexander, Marcus
    Liu, Wei
    Bacsa, Kiran
    Lai, Zhilu
    Chatzi, Eleni
    Data-Centric Engineering, 2024, 5
  • [33] Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications
    Tran, Anh
    Maupin, Kathryn
    Rodgers, Theron
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (01)
  • [34] Hilbert and physics
    Born, M
    NATURWISSENSCHAFTEN, 1922, 10 : 88 - 93
  • [35] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [36] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [37] Machine learning and statistical physics: preface
    Agliari, Elena
    Barra, Adriano
    Sollich, Peter
    Zdeborova, Lenka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [38] Machine learning for condensed matter physics
    Bedolla, Edwin
    Padierna, Luis Carlos
    Castaneda-Priego, Ramon
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (05)
  • [39] Machine learning meets chemical physics
    Ceriotti, Michele
    Clementi, Cecilia
    Anatole von Lilienfeld, O.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (16):
  • [40] MACHINE LEARNING meets QUANTUM PHYSICS
    Das Sarma, Sankar
    Deng, Dong-Ling
    Duan, Lu-Ming
    PHYSICS TODAY, 2019, 72 (03) : 48 - 54