The Simultaneous Local Metric Dimension of Graph Families

被引:4
|
作者
Barragan-Ramirez, Gabriel A. [1 ]
Estrada-Moreno, Alejandro [1 ]
Ramirez-Cruz, Yunior [2 ]
Rodriguez-Velazquez, Juan A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
[2] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, 6 Av Fonte, L-4364 Esch Sur Alzette, Luxembourg
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
local metric dimension; simultaneity; corona product; lexicographic product; complexity; LEXICOGRAPHIC PRODUCT;
D O I
10.3390/sym9080132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a graph G = (V, E), a vertex v is an element of V is said to distinguish two vertices x and y if d(G) (v, x) 6 not equal d(G) (v, y). A set S subset of V is said to be a local metric generator for G if any pair of adjacent vertices of G is distinguished by some element of S. A minimum local metric generator is called a local metric basis and its cardinality the local metric dimension of G. A set S subset of V is said to be a simultaneous local metric generator for a graph family G = {G(1), G(2),...,G(k)}, defined on a common vertex set, if it is a local metric generator for every graph of the family. A minimum simultaneous local metric generator is called a simultaneous local metric basis and its cardinality the simultaneous local metric dimension of G. We study the properties of simultaneous local metric generators and bases, obtain closed formulae or tight bounds for the simultaneous local metric dimension of several graph families and analyze the complexity of computing this parameter.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] The local (adjacency) metric dimension of split related complete graph
    Albirri, E. R.
    Dafik
    Agustin, I. H.
    Adawiyah, R.
    Alfarisi, R.
    Prihandini, R. M.
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [22] On the metric dimension of the total graph of a graph
    Sooryanarayana, B.
    Shreedhar, K.
    Narahari, N.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (04) : 82 - 95
  • [23] The Local Metric Dimension and Distance-Edge-Monitoring Number of Graph
    Yang, Chenxu
    Ji, Zhen
    Li, Wen
    Liang, Yan
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024,
  • [24] On the metric dimension of the Jahangir graph
    Tomescu, Ioan
    Javaid, Imran
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2007, 50 (04): : 371 - 376
  • [25] ON THE BOOLEAN METRIC DIMENSION OF A GRAPH
    MELTER, RA
    TOMESCU, I
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (05): : 407 - 415
  • [26] Edge metric dimension and mixed metric dimension of a plane graph Tn
    Shen, Huige
    Qu, Jing
    Kang, Na
    Lin, Cong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [27] Edge metric dimension and mixed metric dimension of planar graph Qn
    Qu, Jing
    Cao, Nanbin
    DISCRETE APPLIED MATHEMATICS, 2022, 320 : 462 - 475
  • [28] On the Families of Graphs With Unbounded Metric Dimension
    Pan, Heng
    Ali, Murtaza
    Ali, Gohar
    Rahim, Muhammad Tariq
    Yang, Xiaopeng
    IEEE ACCESS, 2019, 7 : 165060 - 165064
  • [29] The connected metric dimension at a vertex of a graph
    Eroh, Linda
    Kang, Cong X.
    Yi, Eunjeong
    THEORETICAL COMPUTER SCIENCE, 2020, 806 : 53 - 69
  • [30] Resolvability in graphs and the metric dimension of a graph
    Chartrand, G
    Eroh, L
    Johnson, MA
    Oellermann, OR
    DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 99 - 113