On the homology of the orthogonal coefficient group in Clifford algebras

被引:0
|
作者
Grebet, JG [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
D O I
10.1016/S1631-073X(03)00069-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this Note is to show that the method used by Dupont and Sah to compute the homology groups H-1(SO(3;R),so(3;R)) and H-2(SO(3;R),so(3;R)) can be reformulated more generally in terms of non-commutative differential forms over Clifford algebras. Applying then this formalism to other Clifford algebras, we are able on the one hand to retrieve the results of Cathelineau for the groups H-1(SL2(C), sl(2)(C) and H-2(SL2(C),sl(2)(C)), and on the other hand to compute H-1(SL2)(R), sl(2)(R)) and H-2(SL2(R),sl(2)(R)), which are isomorphic to Omega(R\Q)(1) and to the null group respectively. (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 50 条
  • [31] Algebras like Clifford algebras
    Eastwood, M
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 265 - 278
  • [32] CLIFFORD ALGEBRAS AND EXTERIOR ALGEBRAS
    REVOY, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (14): : 655 - 657
  • [33] CLIFFORD ALGEBRAS AND EXTERNAL ALGEBRAS
    REVOY, P
    JOURNAL OF ALGEBRA, 1977, 46 (01) : 268 - 277
  • [34] SUPERCONFORMAL ALGEBRAS AND CLIFFORD ALGEBRAS
    HASIEWICZ, Z
    THIELEMANS, K
    TROOST, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (03) : 744 - 756
  • [35] GRADED SKEW CLIFFORD ALGEBRAS THAT ARE TWISTS OF GRADED CLIFFORD ALGEBRAS
    Nafari, Manizheh
    Vancliff, Michaela
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 719 - 725
  • [36] Brauer–Clifford group of Azumaya–Poisson (S, H)-algebras
    Thomas Guédénon
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 551 - 570
  • [37] Brauer-Clifford Group of Lie-Rinehart Algebras
    Guedenon, Thomas
    ALGEBRA COLLOQUIUM, 2022, 29 (01) : 99 - 112
  • [38] Self-orthogonal ideal in group algebras
    Qiu, W.
    Beijing Daxue Xuebao Ziran Kexue Ban/Acta Scientiarum uaturalium Universitatis Pekinensis, 2001, 37 (03): : 294 - 296
  • [39] CLIFFORD MONOIDS AND DEFORMATIONS OF CLIFFORD ALGEBRAS
    HELMSTETTER, J
    JOURNAL OF ALGEBRA, 1987, 111 (01) : 14 - 48
  • [40] Assembly maps for topological cyclic homology of group algebras
    Lueck, Wolfgang
    Reich, Holger
    Rognes, John
    Varisco, Marco
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 755 : 247 - 277