From the Weyl quantization of a particle on the circle to number-phase Wigner functions

被引:10
|
作者
Przanowski, Maciej [1 ]
Brzykcy, Przemyslaw [1 ]
Tosiek, Jaromir [1 ]
机构
[1] Tech Univ Lodz, Inst Phys, PL-90924 Lodz, Poland
关键词
Quantum phase; Number-phase Wigner function; QUANTUM-MECHANICS; ANGLE VARIABLES; HILBERT-SPACE; POV MEASURES; OPERATORS; FORMALISM; DISCRETE; FIELD; RADIATION; CYLINDER;
D O I
10.1016/j.aop.2014.10.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalized Weyl quantization formalism for a particle on the circle is shown to supply an effective method for defining the number-phase Wigner function in quantum optics. A Wigner function for the state (Q) over cap and the kernel K for a particle on the circle is defined and its properties are analysed. Then it is shown how this Wigner function can be easily modified to give the number-phase Wigner function in quantum optics. Some examples of such number-phase Wigner functions are considered. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:919 / 934
页数:16
相关论文
共 50 条
  • [31] Number-phase Wigner function for the field state of a two-photon Jaynes-Cummings model
    Joshi, A
    Dung, HT
    MODERN PHYSICS LETTERS B, 1999, 13 (05): : 143 - 152
  • [32] Quantum phase distribution and the number-phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
    G.R.Honarasa
    M.K.Tavassoly
    M.Hatami
    Chinese Physics B, 2012, 21 (05) : 269 - 277
  • [33] Number-phase quantization and deriving energy-level gap of two LC circuits with mutual-inductance
    Meng Xiang-Guo
    Wang Ji-Suo
    Zhai Yun
    Fan Hong-Yi
    CHINESE PHYSICS LETTERS, 2008, 25 (04) : 1205 - 1208
  • [34] Scalar Charged Particle in Weyl–Wigner–Moyal Phase Space. Constant Magnetic Field
    B. I. Lev
    A. A. Semenov
    C. V. Usenko
    Journal of Russian Laser Research, 2002, 23 : 347 - 368
  • [35] The Weyl-Wigner-Moyal Formalism on a Discrete Phase Space. I. A Wigner Function for a Nonrelativistic Particle with Spin
    Przanowski, Maciej
    Tosiek, Jaromir
    Turrubiates, Francisco J.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2019, 67 (12):
  • [36] Cooper-pair number-phase quantization analysis in double-Josephson-junction mesoscopic circuit coupled by a capacitor
    Liang Bao-Long
    Wang Ji-Suo
    Fan Hong-Yi
    CHINESE PHYSICS B, 2008, 17 (02) : 697 - 701
  • [37] Cooper-pair number-phase quantization analysis in double-Josephson-junction mesoscopic circuit coupled by a capacitor
    梁宝龙
    王继锁
    范洪义
    Chinese Physics B, 2008, (02) : 697 - 701
  • [38] Quantum operators in Weyl quantization procedure via Wigner representation of quantum mechanics - quantum phase operator as a special case
    Davidovic, M
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (2-3): : 195 - 197
  • [39] Scalar charged particle in Weyl-Wigner-Moyal phase space. Constant magnetic field
    Lev, BI
    Semenov, AA
    Usenko, CV
    JOURNAL OF RUSSIAN LASER RESEARCH, 2002, 23 (04) : 347 - 368
  • [40] Phase-number uncertainty from Weyl commutation relations
    Luis, Alfredo
    Donoso, Gonzalo
    ANNALS OF PHYSICS, 2017, 383 : 92 - 100