Optical Nanoantenna Input Impedance

被引:19
|
作者
Xu, Yuancheng [1 ]
Tucker, Eric [2 ]
Boreman, Glenn [2 ]
Raschke, Markus B. [3 ,4 ]
Lail, Brian A. [1 ]
机构
[1] Florida Inst Technol, Dept Elect Engn, Melbourne, FL 32901 USA
[2] Univ N Carolina, Dept Phys & Opt Sci, Charlotte, NC 28223 USA
[3] Univ Colorado, Dept Chem, Dept Phys, Boulder, CO 80309 USA
[4] Univ Colorado, JILA, Boulder, CO 80309 USA
来源
ACS PHOTONICS | 2016年 / 3卷 / 05期
基金
美国国家科学基金会;
关键词
optical nanoantennas; folded dipole antenna; optical antenna impedance; impedance multiplication; infrared frequency; MODES; LIGHT;
D O I
10.1021/acsphotonics.6b00128
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Optical nanoantennas have been studied as a means to manipulate nanoscale fields, local field enhancements, radiative rates, and emissive directional control. However, a fundamental function of antennas, the transfer of power between a coupled load and far-field radiation, has seen limited development in optical antennas owing largely to the inherent challenges of extracting impedance parameters from fabricated designs. As the transitional element between radiating fields and loads, the impedance is the requisite information for describing, and designing optimally, both emissive (transmitting) and absorptive (receiving) nanoantennas. Here we present the first measurement of an optical nanoantenna input impedance, demonstrating impedance multiplication in folded dipoles at infrared frequencies. This quantification of optical antenna impedance provides the long sought enabling step for a systematic approach to improve collection efficiencies and control of the overall antenna response.
引用
收藏
页码:881 / 885
页数:5
相关论文
共 50 条
  • [21] Input impedance conditions for minimizing the noise figure of an analog optical link
    MIT Lincoln Lab, Lexington, United States
    [J]. IEEE Trans Microwave Theory Tech, 12 pt 1 (2025-2031):
  • [22] Input impedance conditions for minimizing the noise figure of an analog optical link
    Ackerman, E
    Cox, C
    Betts, G
    Roussell, H
    Ray, K
    ODonnell, F
    [J]. 1997 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS I-III: HIGH FREQUENCIES IN HIGH PLACES, 1997, : 237 - 240
  • [23] A formalism based on the input impedance to design optical structures with specific properties
    Lehman, M
    [J]. MODERN PHYSICS LETTERS B, 2001, 15 (17-19): : 792 - 795
  • [24] Optical trapping of a nanoparticle by a copper nanoantenna
    Xu, Zhe
    Li, Chen
    Jiang, Jinzhe
    Liu, Haiwei
    Zhao, Yaqian
    [J]. OPTICAL MANIPULATION AND STRUCTURED MATERIALS CONFERENCE 2021, 2021, 11926
  • [25] Dielectric Resonator Nanoantenna for Optical Frequencies
    Malheiros-Silveira, Gilliard N.
    Hernandez-Figueroa, Hugo E.
    [J]. 2013 IEEE PHOTONICS CONFERENCE (IPC), 2013, : 685 - 686
  • [26] An optical reflectarray nanoantenna: The concept and design
    Ahmadi, Akram
    Ghadarghadr, Shabnam
    Mosallaei, Hossein
    [J]. OPTICS EXPRESS, 2010, 18 (01): : 123 - 133
  • [27] Dielectric Resonator Nanoantenna at Optical Frequencies
    Sethi, Waleed Tariq
    Vettikalladi, Hamsakutty
    Fathallah, Habib
    [J]. 2015 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY RESEARCH (ICTRC), 2015, : 132 - 135
  • [29] Optical phased array nanoantenna link
    Dregely, D.
    Lindfors, K.
    Lippitz, M.
    Giessen, H.
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [30] A Novel Miniaturized Dielectric Optical Nanoantenna
    Xu, Yue
    Dong, Tao
    Zhao, Hang
    [J]. 2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,