A Semi-Supervised Learning Approach for Network Anomaly Detection in Fog Computing

被引:0
|
作者
Xu, Shengjie [1 ]
Qian, Yi [1 ]
Hu, Rose Qingyang [2 ]
机构
[1] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Omaha, NE 68182 USA
[2] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84321 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning plays a vital role in the detection of network anomalies. In this paper, we first briefly examine the different categories of machine learning models, regarding to the acquisition of data label. With the support of fog computing, we then propose data-driven network intelligence for anomaly detection. The proposed framework includes fog enabled infrastructure and fog assisted artificial intelligence (AI) engine. Fog enabled infrastructure provides efficient computing resources for the selection of optimal learning model and sampling ratio. Fog assisted AI engine trains effective and robust semi-supervised learning models for detecting anomalies. We demonstrate that the optimal learning model achieves high detection accuracy and effective computational performance, with the close cooperation between infrastructure and AI engine in a fog computing environment.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Comparative Study on Supervised versus Semi-supervised Machine Learning for Anomaly Detection of In-vehicle CAN Network
    Dong, Yongqi
    Chen, Kejia
    Peng, Yinxuan
    Ma, Zhiyuan
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2914 - 2919
  • [22] Back Propagation Approach for Semi-supervised Learning in Granular Computing
    Hu, Hong
    Liu, Weimin
    Shi, Zhongzhi
    [J]. ROUGH SET AND KNOWLEDGE TECHNOLOGY (RSKT), 2010, 6401 : 468 - 474
  • [23] SANTA: Semi-supervised Adversarial Network Threat and Anomaly Detection System
    Zia, Muhammad Fahad
    Kalidass, Sri Harish
    Roscoe, Jonathan Francis
    [J]. ARTIFICIAL INTELLIGENCE XL, AI 2023, 2023, 14381 : 335 - 349
  • [24] DISCRIMINATIVE SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL ANOMALY DETECTION
    Jiang, Tao
    Xie, Weiying
    Li, Yunsong
    Du, Qian
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2420 - 2423
  • [25] SemiContour: A Semi-supervised Learning Approach for Contour Detection
    Zhang, Zizhao
    Xing, Fuyong
    Shi, Xiaoshuang
    Yang, Lin
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 251 - 259
  • [26] Semi-supervised machine learning approach for DDoS detection
    Idhammad, Mohamed
    Afdel, Karim
    Belouch, Mustapha
    [J]. APPLIED INTELLIGENCE, 2018, 48 (10) : 3193 - 3208
  • [27] A semi-supervised learning approach for detection of phishing webpages
    Li, Yuancheng
    Xiao, Rui
    Feng, Jingang
    Zhao, Liujun
    [J]. OPTIK, 2013, 124 (23): : 6027 - 6033
  • [28] Semi-supervised machine learning approach for DDoS detection
    Mohamed Idhammad
    Karim Afdel
    Mustapha Belouch
    [J]. Applied Intelligence, 2018, 48 : 3193 - 3208
  • [29] Feature extraction for subtle anomaly detection using semi-supervised learning
    Li, Yeni
    Abdel-Khalik, Hany S.
    Al Rashdan, Ahmad
    Farber, Jacob
    [J]. ANNALS OF NUCLEAR ENERGY, 2023, 181
  • [30] Multi-domain Active Learning for Semi-supervised Anomaly Detection
    Vercruyssen, Vincent
    Perini, Lorenzo
    Meert, Wannes
    Davis, Jesse
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT IV, 2023, 13716 : 485 - 501